Percentiles and textbook definitions - confused or what?

Take the following definitions ...

HyperStat Online:
A percentile rank is the proportion of scores in a distribution that a specific score is greater than or equal to. For instance, if you received a score of 95 on a math test and this score was greater than or equal to the scores of 88% of the students taking the test, then your percentile rank would be 88. You would be in the 88th percentile.
http://www.ruf.rice.edu/~lane/hyperstat/A79766.html
Hinkle, D., Wiersma, W., \& Jurs, S. (1994). Applied statistics for the behavioral sciences. (3rd ed.). Boston: Houghton Mifflin Company. (p. 49-50)
A percentile is the point in a distribution at or below which a given percentage of scores is found. For example, the $28^{\text {th }}$ percentile of a distribution of scores is the point at or below which 28% of the scores fall.

Monroe County School District, Florida, US
The percentile is a point on a scale of scores at or below which a given percent of the cases falls. For example, a child who scores at the 42 percentile, is doing as well as, or better than, 42 percent of the students who took the same test.
http://www.monroe.k12.fl.us/poinciana/what is a percentile or percenti.htm
Wisconsin Department of Public Instruction
A percentile is a value on a scale that indicates the percent of a distribution that is equal to it or below it. For example, a score at the 95th percentile is equal to or better than 95 percent of the scores.
http://www.dpi.state.wi.us/dpi/standards/mathglos.html

Moore, D.S. and McCabe, G.P. (1993) Introduction to the Practice of Statistics $2^{\text {nd }}$ Edition. New York: W.H. Freeman and Company (p. 40)
The pth percentile of the distribution is the value such that p percent of the observations fall at or below it.

Hays, W.L. (1994) Statistics, $5^{\text {th }}$ Edition. Florida: Harcourt Brace. (p. 194)
In any frequency distribution of numerical scores, the percentile rank of any specific value x is the percentage of the total cases that fall at or below x in value.

Kiess, H.O. (1996) Statistical Concepts for the Behavioral Sciences. London: Allyn and Bacon (p. 46)

A percentile is the score at or below which a specified percentage of scores in a distribution falls.

STATISTICA 6 (Statsoft Inc.)

The percentile (this term was first used by Galton, 1885a) of a distribution of values is a number x_{p} such that a percentage p of the population values are less than or equal to x_{p}. For example, the 25 th percentile (also referred to as the .25 quantile or lower quartile) of a variable is a value $\left(x_{p}\right)$ such that $25 \%(p)$ of the values of the variable fall below that value.

Howell, D. (1989) Fundamental Statistics for the Behavioral Sciences. $2^{\text {nd }}$ Edition. Boston: PWSKent Publishing. (p. 36)
A percentile is the point on a scale at or below which a given percentage of the scores fall.

* contrast this with the definition by Howell (2002) at the bottom of page 2 overleaf!!

Contrast the above with the following:

Bartram, D. and Lindley, P.A. (1994) BPS Level A Open Learning Training Manual: Scaling Norms and Standardization, Module 2, part 1. London: BPS Publications (p.17)
The proportion of people scoring less than a particular score is called the percentile rank of the score. More commonly we refer to this as just the percentile.

Crocker, L., \& Algina, J. (1986). Introduction to Classical and Modern Test Theory. New York: Holt, Rinehart and Winston. (p. 439)
Loosely speaking, the percentile rank corresponding to a particular raw score is interpreted as the percentage of examinees in the norm group who scored below the score of interest.

Testing And Assessment: An Employer's Guide To Good Practices. A document by the U.S. Department of Labor Employment and Training Administration 1999
Percentile score: The score on a test below which a given percentage of scores fall. For example, a score at the 65th percentile is equal to or higher than the scores obtained by 65% of the people who took the test.
http://www.911dispatch.com/iob file/eta pub.html\#appendixb

Pagano, R.R. (1994) Understanding Statistics in the Behavioral Sciences. $4^{\text {th }}$ Edition. New York: West Publishing Company. (p. 44)
A percentile or percentile point is the value on the measurement scale below which a specified percentage of the scores in a distribution fall.

Kline, P. (2000) A Psychometrics Primer. London; Free Association Books. (p. 41) and Kline, P. (2000) A Handbook of Psychological Testing. London: Routledge. (p. 59)

A percentile is defined as the score below which a given proportion of the normative group falls.

Ferguson, G.A. and Takane, Y. (1989) Statistical Analysis in Psychology and Education $6^{\text {th }}$ Edition. New York: McGraw-Hill (p. 482)
If k percent of the members of a sample have scores less than a particular value, that value is the $k^{\text {th }}$ percentile point.

Rosenthal, R. and Rosnow, R. (1991) Essentials of Behavioral research: Methods and Data Analysis $2^{\text {nd }}$ Edition. New York: McGraw-Hill. (p. 625)
A percentile is the location of a score in a distribution defining the point below which a given percentage of the cases fall. E.g. a score at the $90^{\text {th }}$ percentile falls at a point such that 90 percent of the scores fall at or below that score.

Cronbach, L.J. (1990) Essentials of Psychological Testing $5^{\text {th }}$ Edition. New York: Harper Collins. (p. 109-110).
"Tony stands third out of 40 on Test A, tenth on test B". Because ranks depend upon the number of persons in the group, we have difficulty when group size changes. Therefore ranks are changed to percentile scores. A percentile rank tells what proportion of the group falls below this person.

Howell, D.C. (2002) Statistical Methods for Psychology $5^{\text {th }}$ Edition. Duxbury Press. (p. 62)
Finally, most of you have had experience with percentiles, which are values that divide the distribution into hundredths. Thus the $81^{\text {st }}$ percentile is that point on the distribution below which 81% of the scores lie.

Glass, G.V. and Hopkins, K.D. (1996) Statistical Methods in Education and Psychology, $3^{\text {rd }}$ Edition. London: Allyn and Bacon. (p. 25)
Percentiles are points in a distribution below which a given p percent of the cases lie.

Fisher, L.D. and van Belle, G. (1993) Biostatistics: a methodology for the Health Sciences. New York: Wiley. (Wiley Series in Probability and Mathematical Statistics) (p. 51)
The $25^{\text {th }}$ percentile is that value of a variable such that 25% of the observations are less than that value, and 75% of the observations are greater.

Armitage, P. and Berry, G. (1994) Statistical Methods in Medical Research, $3^{\text {rd }}$ edition. London: Blackwell Science. (p. 34)
The value below which P\% of the values fall is called the $\mathrm{P}^{\text {th }}$ percentile
SPSS Inc. (version 10.05)
Percentiles are values that divide cases according to values below which certain percentages of cases fall. For example, the median is the 50% percentile, the value below which 50% of the cases fall.

A percentile is the point in a distribution at or below which a given percentage of scores is found -or-
The value below which $\mathrm{P} \%$ of the values fall is called the $\mathrm{P}^{\text {th }}$ percentile

Answer:

In fact, both definitions are correct. What is at fault is the lack of clarity in some cases over what constitutes a "score". Let's use the median to exemplify what's going on.

All authors invariable refer to an observed frequency distribution which is referred to a continuous value, real-number distribution like the Normal Distribution. Further, examples will be given in terms of the median value for a set of scores, which is that number above and below which 50% of the scores in a distribution lie. In short, the $50^{\text {th }}$ percentile. If you recall, the calculation for the median for an odd-numbered set of ordered scores is the middle value. So, if there are 5 ordered scores, the median is the $3^{\text {rd }}$ score in the series. If it is an equal number of scores (say 4), then the median is the average of the $2^{\text {nd }}$ and $3^{\text {rd }}$ score. Note carefully, this score is sometimes not defined when using integer test scores e.g. take four scores on a test which is scored out of 10, in integer units $\ldots 2,4,5,9$. The median of these scores is $(4+5) / 2=4.5$. This is the $50^{\text {th }}$ percentile score - yet no-one can ever obtain it as the test scores are always $1,2,3,4,5,6,7,8,9,10$. So, the most correct definition for a percentile is, given this example is:
The value below which $\mathrm{P} \%$ of the values fall is called the $\mathrm{P}^{\text {th }}$ percentile
as this is the score below which 50% of the observations will lie. And nobody can equal it.
But, now take the scores $2,4,5,8,9$. The median is 5 . This is an attainable score. What do we say if someone scores a 5 ? You guessed it ... the person scores at the $50^{\text {th }}$ percentile - attaining a median score. So the definition that now looks most appropriate in this case is:
A percentile is the point in a distribution at or below which a given percentage of scores is found.

So how can both be correct - yet seem to be more appropriate under different conditions? The clue is spread throughout the various texts quoted above. The test score, although in many cases an integer value, is in fact deemed a point-estimate of a hypothetical interval of continuous realvalue number scores. So, a test score of 4 is actually considered to be a point-estimate of scores that can range from 3.5 through to 4.49999999999999999999999999999999999999 . Therefore, when computing the median of $2,4,5,9$ as $(4+5) / 2=4.5$, we are in fact computing an average of $4.499999999999999999999999999999999999999+4.5=4.5$ (rounded). The first number is the upper bound of the point-estimate 4.0. The second number is the lower bound of the pointestimate 5.0.

Now take the example $2,4,5,8,9$. The median is 5 . But, the upper bound of this number is 5.4999999999999999999999999999999 . It is a verbal "shorthand" that states that 5 is the median - in fact the upper bound of the median is 5.49999 etc (note it could also be as low as 4.5 given the definition of a point-estimate number).

So, we have to be very careful with our terminology of what a "score" is actually said to represent. If we are referring to observed, integer-value scores, without any regard to the hypothetical score intervals, then to find the percentile of a distribution of scores requires finding that single observed score which cleanly separates the scores above and below it into an integer percentile. i.e the score value below which 33% of the scores lie, and above which 67% of the score lie. This one score will be the $33^{\text {rd }}$ percentile. However, unless we have extremely large samples of scores (in the thousands), and a test score range of exactly 0 to 100 in unit ($=1$) steps, this is never likely to happen. So, the most efficient way of always being able to compute an exact percentile score is by using a standard formula to calculate any required percentile for any frequency distribution of scores. What this requires however is that we taken into account the upper and lower bound for every integer score - assuming that each exact integer score is actually the middle score of an
interval extending 0.5 either side ... in which an infinity of continuous, real-valued scores can be theoretically "observed" (which begs the question "how!!?!").

The formula is:

$$
P_{i}=l l+\left(\frac{n p-c f}{f_{i}}\right) \cdot w
$$

where
$P_{i}=$ the $i^{\text {th }}$ percentile
$l l=$ the exact lower limit of the interval containing the percentile point
$n=$ the total number of scores
$p=$ the proportion corresponding to the desired percentile
$c f=$ the cumulative frequency of scores below the interval containing the percentile point
$f_{i}=$ the frequency of scores in the interval containing the $i^{\text {th }}$ percentile point
$w=$ the width of the class interval
Let's take an example of some test scores ... the EPQR Extraversion scale, with a 0-21 test score range...

What would be the $75^{\text {th }}$ percentile score - that score below which 75% of the sample score? Well, we can see from the above table that it must be between 18 and $19 \ldots$ as this is where between 74.26% and 79.34% of the sample scores are found. Applying the formula ...

Our scores in this case are single values - no range at all. So, our class intervals are in fact the scores themselves. E.g. 0-0, 1-1, 2-2, 3-3 etc. The exact limits however correspond to ± 0.5 around each class interval boundary score - the $0,1,2,3,4,5,6$ etc. So, our exact limits are: $0=-0.5$ to +0.5
$1=+0.5$ to +1.5
$2=+1.5$ to +2.5
$3=+2.5$ to +3.5
etc.
Let's re-label the table to correspond with our notation in the formula ...

where
$P_{75}=$ the $75^{\text {th }}$ percentile
$l l=18.5=$ the exact lower limit of the interval containing the percentile point
$n=610=$ the total number of scores
$p=0.75=$ the proportion corresponding to the desired percentile (note this is nothing more
than the percentile expressed as a proportion $(75 \div 100)$
$c f=453=$ the cumulative frequency of scores below the interval containing the percentile point
$f_{i}=31=$ the frequency of scores in the interval containing the $i^{\text {th }}$ percentile point
$w=1.0=$ the width of the class interval
feeding these values into the formula we obtain ...

$$
\begin{aligned}
& P_{i}=l l+\left(\frac{n p-c f}{f_{i}}\right) \cdot w \\
& P_{75}=18.5+\left(\frac{610 \cdot 0.75-453}{31}\right) \cdot 1.0 \\
& P_{75}=18.5+\left(\frac{457.5-453}{31}\right) \cdot 1.0 \\
& P_{75}=18.5+0.1452 \cdot 1.0=18.645
\end{aligned}
$$

So, the $75^{\text {th }}$ percentile is a score of 18.645 . This is the score at which 75% of observations will be observed to be below this score. BUT - the score is unattainable as this is an integer scored test. What we actually observe is that 74.26% scores will lie at or below 18 , with 79.34% of scores at 19 or below. IF we want to use exact percentiles - then we have to accept that our scores are estimates of hypothetical real-valued continuous numbers, hence a score of 18.645 is perfectly valid under these conditions, and the definition of a percentile is most correctly defined as the value below which $\mathbf{P \%}$ of the values fall.

However, what would the $76^{\text {th }}$ percentile look like...

$$
\begin{aligned}
& P_{i}=l l+\left(\frac{n p-c f}{f_{i}}\right) \cdot w \\
& P_{76}=18.5+\left(\frac{610 \cdot 0.76-453}{31}\right) \cdot 1.0 \\
& P_{76}=18.5+\left(\frac{463.6-453}{31}\right) \cdot 1.0 \\
& P_{76}=18.5+0.3419 \cdot 1.0=18.84
\end{aligned}
$$

note, all figures remain the same except for the proportion - which changes from 0.75 to 0.76 .
So, when an individual scores 19 on a test, what do we conclude?
Here we need to compute the percentile rank of the score - which is just the reverse of computing the score for a particular percentile. Now we know the score (=19), but need to compute the percentile for it ...

The formula is:
$P R_{x}=\left[\frac{\left(c f+\left(\frac{x-l l}{w}\right) \cdot f_{i}\right)}{n}\right] \cdot 100.0$
where
$P R_{x}=$ the percentile rank of score x
$l l=$ the exact lower limit of the interval containing the score x
$n=$ the total number of scores
$c f=$ the cumulative frequency of scores below the interval containing the score x
$f_{i}=$ the frequency of scores in the interval containing x
$w=$ the width of the class interval

So, for a score of 19 , the exa ct percentile rank is:

$$
\begin{aligned}
& P R_{x}=\left[\frac{\left(c f+\left(\frac{x-l l}{w}\right) \cdot f_{i}\right)}{n}\right] \cdot 100.0 \\
& P R_{19}=\left[\frac{\left(453+\left(\frac{19-18.5}{1.0}\right) \cdot 31\right)}{610}\right] \cdot 100.0 \\
& P R_{19}=\left[\frac{(453+0.5 \cdot 31)}{610}\right] \cdot 100.0 \\
& P R_{19}=76.80 \%
\end{aligned}
$$

a score of 19 is at the $76.8^{\text {th }}$ percentile - the score at which 76.80% of scores will be found to be below this score.

BUT ...

All the above is standard fare - and is highly confusing given that only integer value scores can ever be observed. What we know from our observed frequency distribution table is that 79.3443\% of individuals scored 19 or below. By invoking the "exact limits" property around each possible score, the values of observed frequencies no longer tally with the hypothetical "score" frequencies. So, the definition ...
A percentile is the point in a distribution at or below which a given percentage of scores is found now seems more sensible- when using actual scores vs exact-limit interval scores. But, using actual scores means that only certain $\%$ values can be provided - based upon the exact number of
frequencies observed for each score. So, there can be no $75^{\text {th }}$ percentile for our observed frequency distribution - only a $74.26^{\text {th }}$ or $79.34^{\text {th }}$ percentile. Whereas, if we invoke the "scores are sampled from a hypothetical distribution of real-valued, continuous scores, we can compute exact percentiles - and must express our scores accordingly:

Observed frequency data percentile for score $19 \quad=79.34 \%$
Assumed continuous score percentile for score $19=76.80 \%$

Conclusions

1. If you want to assign exact percentile ranks to scores, then you must use the formulae above and assume each integer score is actually a point-estimate from an interval of possible scores. Here, the definition of a percentile is the value below which $\mathrm{P} \%$ of the values fall.
2. If you are happy with simply stating the frequency of people who score at or below an observed test score, then you use the actual frequencies of scores in your normative data. Here, the percentile is the point at or below which a given percentage of scores is observed.

Hopefully, you can see the contrast that is being made, why, and why the definitions when taken as simple statements seem so contradictory! They are not - because they are based upon different conceptualisations of the frequency distribution of scores. The first assumes that scores are continuous but observed as integer, the second assumes scores are as they are represented integers, and no more.

Which now begs the question - which assumption is most valid? Well, when you compute a mean score, invariably this will be a real number (say 12.57), yet the scores are integer. Likewise the plethora of statistics computed using conventional quantitative techniques. It is only with the class of statistics known as non-parametric or order-statistics will the integers be preserved as unique entities. All other techniques for numeric manipulation will treat the numbers as continuous (by definition of the arithmetic operations permitted). So, if you want to remain consistent with probably almost every other way you treat test scores, then adopt conclusion \#1. If you are a purist - and do not want to treat your scores as anything but ordinal rank values (integers), then adopt \#2. Your definition of percentile will change accordingly to suit.

