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The aim of this chapter is to describe the methodology, which will be used in 

subsequent chapters to comparatively assess the application of MLP type Neural 

Networks, of varying model complexity and a Logistic Regression model to clinical 

decision making problems from the field of Psychiatry. This methodology arises 

directly from the discussions and discourses of Chapters 2 and 3. The methodology 

consists of the following components: 

 

• LD and MLP Neural Network Training 

• Model Selection and Model Comparison 

• Significance tests 

• Estimating the future performance a model 

 

 

 

 

 
 

75 



Chapter 4       Methodology 

4.1 LD and MLP Neural Network Training 

Model Implementations 
 
The primary aim of empirical studies, carried out in this thesis, is to compare a 

Logistic Discriminant model (LD, which is effectively a Logistic Regression) with 

Multi-Layer Perceptron (MLP) models. 

The LD model can be implemented as MLP model with zero hidden units, where the 

inputs are directly connected to a single logistic output unit. As well there is an 

additional bias unit, which always fires a value of one, which also connects to the 

output unit (see Chapter 2 and Appendix 2 for a detailed exposition).  

MLP models contain a layer of logistic hidden units which are intermediate between 

the inputs and a single logistic output unit. In this case, inputs connect with these 

hidden units. The hidden units, in turn, connect with a single logistic output unit.     

As well there is an additional bias unit, which always fires a value of one, which also 

connects to the hidden units and the output unit (see Chapter 2 and Appendix 2 for a 

detailed exposition).  

As described in chapter 2, the number of hidden units in an MLP model, determine 

the complexity of that model. An LD model (which can be conceptualised as an MLP 

model with zero hidden units) is a least complex model. It is a linear model, which 

partitions an input space into two regions (one for cases belonging to one class and the 

other for cases belonging to the other class) using a single linear function.  
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MLP models are more complex, with their complexity indexed by the number of 

hidden units they contain. The least complex MLP model contains 2 hidden units 

(because having one hidden unit is identical to having zero hidden units). An MLP 

with 2 hidden units partitions the input space into two regions using a non-linear 

boundary, implemented  by the joint boundary created by two linear functions (one 

each for each hidden unit). The next more complex MLP model has 3 hidden units, 

and partitions the input space into two regions using a non-linear boundary 

constructed from 3 linear functions. An MLP with four hidden units construct a non-

linear boundary from 4 linear functions, an MLP with five hidden units construct a 

non-linear boundary from 5 linear functions, and so on. As the number of hidden units 

increases, so does the number of linear functions used to construct the decision 

boundary.  As the number of hidden units increases, the complexity (number of 

possible twists and turns) of the constructed boundary also increases. See Chapter 2 

and Appendix 2 for a detailed exposition. 

Model complexity, in general, can be measured by the number of adjustable 

parameters in that model. As the number of hidden units in an MLP model increases, 

so does the number of parameters. For a given input dimension (number of inputs), an 

LD model has the fewest number of parameters, an MLP model with 2 hidden units 

has just more than twice the number of parameters of the LD model, an MLP model 

with 3 hidden units has just over three times the number of parameters of the LD 

model, and so on. 
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The tradeoff between bias and variance, discussed in chapter 2, has a decisive impact 

here. As we increase complexity (in blocks which are multiples of the input 

dimension) from LD to MLP2, to MLP3, etc, error due to bias decreases and error due 

to variance increases. Within the bounds of fixed size training dataset, there will be a 

point, on the complexity continuum (gradated by whole numbers of hidden units), 

where shifting from one complexity level to the next highest complexity level, results 

in a poorer partitioning (in terms generalised classification accuracy) of the input 

space. Our general aim is to attempt to identify this point on the complexity 

continuum. However at a fixed size training dataset, particularly with kinds of 

datasets available in psychiatry (that is relatively small sized datasets which have 

relatively large number of input variables), this point is likely to be at the low end of 

the continuum. MLP models, with many hidden units and therefore a very large 

number of parameters are highly likely to overfit on small datasets and therefore have 

poor classification accuracy when applied to future cases. To avoid this possibility, 

we are limiting our consideration of models to the LD model and MLP model with 9 

or less hidden units, in our investigations of clinical datasets reported in later chapters                       

Software 
 
All models, LD and MLP are implemented using the NevProp 4.0, software 

[Goodman 1999].   This package was designed specifically for the application of 

MLPs to bio-medical problems [Goodman & Harrel 2001]. 

    

 78



Chapter 4       Methodology 

Error Function 

For classification problems the Cross-Entropy Error function, is a better choice of 

Training Error criteria (the measure that is minimised by training) than is Mean 

Square Error, a criteria more traditionally used in regression problems (Hastie et al 

2001). Thus in all the subsequent studies the training criteria for all Neural Network 

models (including the Logistic Discriminant model) will be the Cross-Entropy error 

function (see Appendix 2 for an extended discussion and a definition). 

Optimisation Algorithm 

In this thesis, we will use the QuickProp algorithm [Falhman, 1987], for both the LD 

and MLP classifiers to find an optimal set of weights for each classification problem.  

A more detailed exposition of optimisation algorithms (including QuickProp) for 

MLP type neural networks is contained in Appendix 2.   

 

Weight Decay  

Weight Decay is a technique, applied during optimisation training, which reduces 

towards zero, individual weights which do not contribute to model. This reduces the 

effective complexity of the model, by eliminating unneeded (in terms of the model) 

weights. In the studies reported later in this thesis a weight decay of - 0.01 was used to 

train all models. See Chapter 2 and Appendix 2 for a detailed exposition. 

Stop Training Criteria 

As outlined in chapter 2 (see Figure 2.7) the most ideal point on the training iterations 

continuum at which to stop training, is the turning point at which Test Set Error stops 

decreasing and begins to increase.  In order to estimate the location of this point, with 
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respect to training, the following training procedure will be employed to train all 

models (LD and MLP): 

1. Randomly split the Full Dataset into a Training Dataset (75%) and a ‘hold out’ 

Test Dataset (25%). 

2. Train the model, on the Training Dataset, using cross-entropy error as the 

training criteria. Continue training for up to 1,000 iterations (of the QuickProp 

algorithm), and simultaneously measure cross-entropy error on the ‘hold out’ 

Test Dataset. 

3. Determine the minimum value of the ‘hold out’ Test Dataset Cross-Entropy 

error and identify the corresponding value of Training Dataset Cross-Entropy 

error associated with this point in training. Call this value the Training Target 

Value. 

4. Repeat steps 1 to 3 above 5 times. That is create five 25% hold out sets and 

train on the remaining 75% five times. This results in five Training Target 

Values. Average these to arrive at an Average Training Target Value. 

5. Train the model again on the Full Dataset, and stop training when Cross-

Entropy Error measured on this full dataset is equal to the Average Training 

Target Value. 

The training procedure described above is implemented as an optional algorithm in 

the Nevprop 4.0 software used in this thesis. The procedure is referred to as “Hold-

Out training”  (Goodman, 1999). 
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4.2 Comparison of Linear and Non-Linear Classification  

Our hypothesis, which we wish to test in respect of a number of different clinical 

datasets, is that an MLP generated non-linear model will classify better a Logistic 

Regression generated linear model. This immediately raises a number of questions 

such as: which MLP generated non-linear model (amongst several) do we want to use 

as our comparator to a Logistic Regression generated model? and what measure of 

classifier performance will we use as our basis for comparison? 

Model Comparison using Bootstrapping 

Bootstrapping is a resampling procedure, which can be used to derive an estimate of 

the accuracy of a classifier when it is applied to future cases. Therefore it can be used 

in place of a test set. In the studies reported in later chapters we will draw 100 

Bootstrap samples (by sampling with replacement) from the original training dataset. 

Each bootstrap sample has the same N as the original training dataset, but it is not an 

identical copy of the original training dataset. It will contain duplications of some 

cases from the original training dataset (because once sampled a case is replaced and 

can be resampled) and it will not contain some cases (because they not chosen in N 

samplings). On average each bootstrap derived sample will contain 63% of the cases 

in the original training dataset [Goodman 1999]  

The model, under examination, is trained on each the 100 bootstrap samples and this 

creates 100 sets of parameter estimates. The model is then applied to original full 

training dataset, 100 times, each time with a different bootstrap sample derived 

parameter set. For each bootstrap sample, two estimates of classification accuracy 

(measured as Area Under the ROC Curve - Az) are calculated for each parameter set. 

The first, we will call it B, is calculated as the Az of the model (using bootstrap sample 
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derived parameter set) applied to its own training set (the bootstrap sample). The 

second, we will call it C, is calculated as the Az of the model (using the bootstrap 

sample derived parameter set) applied to the original full training dataset. That is we 

are using the original full training dataset as a test set for the bootstrap derived 

training dataset. On average, values of B for each bootstrap sample are more 

optimistic (higher) than the corresponding value of C. By subtracting C from B for 

each bootstrap sample, we can calculate a third value (B – C). This value is an 

estimate of the magnitude of the optimistic bias contained in the value for B. If we 

average the value of (B – C) across the 100 bootstrap samples, we derive an estimate 

of the optimistic bias (OB) of this model. We can then use this estimate of the 

optimistic bias of this model to derive an estimate of the classification accuracy of this 

model on future cases, by subtracting OB from the value of Az obtained by training the 

model on the full training dataset and measuring it on the full training dataset. This 

gives us a corrected value for the Az, which we will refer to later as ‘bootstrap 

corrected Az  ‘. This bootstrap correction procedure is implemented as an algorithm in 

the NevProp 4.0 software, we are using to implement our models. Bootstrapping can 

provide an estimate of the cross-validation accuracy (that is accuracy for classifying 

future cases) associated with a model [Hastie et al 2001, Goodman et al 1996].  See 

Chapter 3 and Appendix 2 for a more detailed exposition of the bootstrap correction 

procedure. 

Non-Linear Model Complexity Selection 

We can vary the complexity of the MLP generated non-linear models, almost 

indefinitely, by varying the number of hidden units in an MLP, starting at 2 and 

proceeding towards infinity. For practical problems such as ours, we can apriori 

exclude models with a large numbers of hidden units (say 10 plus), because these 
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models will each contain a very large number of parameters, which in turn will lead to 

overfitting. However this still leaves us with a choice from a range of models (with 2 

to 9 hidden units) of increasing complexity, indexed by the number of hidden units.  

From our previous examination of the bias-variance tradeoff, we know that for each 

increment in complexity, error due to bias will decrease and error due to variance will 

increase, and that the change in error between models is a function of bias and 

variance only.  

The aim of model selection is to choose a model (amongst two or more) that is likely 

to perform well on future cases. A spare (used only for model selection) large test 

dataset could be used as the basis for model selection. However in less data rich 

circumstances (the norm in psychiatric research), we need to find another way. If we 

use Bootstrap derived indices of accuracy as our basis for model selection, then we 

cannot later ‘re-use’ these indices as a basis for comparing the ‘chosen’ model with 

another model(s). This is because the Bootstrap derived indices have been used as part 

of the design process of the model, in that they have been used for the purposes of 

selecting the value of a model hyperparameter: the model complexity level. 

A solution to this problem would be to use a training dataset derived score of a 

model(s)’s generalisation performance. Ripley [2003], who discuses this topic 

suggests using the Akaike Information Criterion (AIC), which is calculated using 

values derived only from the training dataset.  Our discussion of the bias-variance 

trade off in Chapter 2 (see figure 2.8), indicates that at one point somewhere along a 

complexity dimension, classification error measured on a test dataset will be at a 

minimum, and that this point is the best criteria for selecting a model of a given 

degree of complexity, as the best model.  The best model is the one which offers the 

best trade off between error due to Bias and error due to variance. The AIC is a single 
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index or score which can be calculated for any model, based only training dataset 

derived values, which takes into account estimates of the impacts of both bias and 

variance [Hastie et al 2001]. 

   AIC = -2log(L) + 2p    (4.1) 

  Where -Log(L) is the negative log likelihood of the model 
   

p is the number of parameters in the model 
 
 

The first term, -2Log(L), is an estimate of the error due to bias, whilst the second 

term, 2p, is an estimate of the error due to variance. As models increase in complexity 

the bias term will become smaller, because the dataset is fitted better and the variance 

term will become larger, as the number parameters increases. We want models which 

trade off bias and variance to give the smallest overall error. Thus using AIC as a 

proxy for this, we will select the model which has the smallest AIC value. 

For practical purposes in our studies we can calculate the AIC for all our models using 

the following procedures. The Nevprop 4.0 software we are using to implement our 

models, gives the average cross-entropy value for each model as a summary statistic. 

This value is equivalent to the value of the average negative log likelihood of the 

model on the training dataset (Goodman, 1999). Thus if we multiply this value by 2 

and by the number of cases in the training set, we now have the value first term of the 

AIC for that model.  The second term, the number of model parameters, is calculated 

by multiplying the number of inputs plus one by the number of hidden unit, then to 

this result adding the number of hidden units plus one and finally multiplying the last 

result by two.   
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4.3 Significance tests 
 

The most frequently used criterion, in the medical literature, for comparing classifiers 

is Az (the Area Under the ROC Curve, see Chapter 3).  Once we have selected an 

MLP neural network model, on the basis of the AIC measure, then we will want to 

compare this MLP non-linear model to the Linear Logistic Regression model, on the 

basis of their bootstrap corrected Az values, to determine if the selected non-linear 

MLP model offers us any improvement as a classifier of future cases beyond that 

which can be obtained using a linear Logistic Regression model.   

Hanley & McNeil [1982,1983] discuss the use of ROC Curves to evaluate classifiers 

and present a test of statistical significance which can be used to compare the Areas 

under the ROC Curves derived by applying different classifiers to the same cases. 

Their test is used to compute a z score, which can then be converted to a probability, 

that the two Areas under the ROC Curves are the same. Hanley & McNeil [1983]’s 

formula for computing z is: 
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Where   A1 and A2 are the two Areas under the ROC Curves 

 

 SE1 and SE2 are the corresponding Standard Errors of the two Areas under 

the ROC Curves 

 

  

r is the correlation coefficient between the two Areas under the ROC 

Curves. A table for calculating r from case data is given in Hanley & 

McNeil [1983]. In order to calculate r we first need to calculate rpos  and 

rneg , the correlations between individual case outputs of the two models, 

for the subset of cases which are positive (target value = 1) and the  subset 

of cases which are negative (target value = 0), respectively 

 

Hanley & McNeil [1982] show that The Standard Error of ROC Curve (SEROC) is 

related to the Standard Error of the Wilcoxon Statistic, and can be calculated as 

follows: 

PN
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NN
AUCQNAUCQNAUCAUC

ROCSE *
)2

2)(1()2
1)(1()1( −−+−−+−

=    (4.3) 

Where   Q1 = AUC/(2-AUC)   and  Q2 = 2AUC2/(1+AUC)  

  NP = number of positive cases and NN = number of negative cases 
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4.4 Determining the Future Performance of a Classifier 
 
 
Once a set of candidate classifiers have been evaluated and one is chosen as the best 

(of the set), then we will want to know how well this classifier will operate in the real 

world.  In our case, we have already made extensive use of our dataset for training 

(using the holdout method to determine the stop training point) and for model 

selection (using AIC). We cannot re-use, the bootstrap corrected Az of our model, 

because it has already been used as the model comparison criteria. Thus, the bootstrap 

corrected derived Az is part of the design parameters of our final model and therefore 

not independent of this model. As well because Az  is a resubstitution based estimate it 

is optimistic, but to an unknown extent.    

 

In such a case, we will need to obtain another independent dataset, apply our model to 

this independent dataset and use the performance of our model (which can be 

measured by various indices, see Chapter 3) on this independent dataset as an estimate 

of the future performance of our classifier. Due to the limitations of available data, 

this procedure could only be carried out with one of our clinical studies, the Autistic 

Disorder Diagnosis Study (Chapter 7).          
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4.5 Summary 
 
The methodology used later in this thesis  

1. Use NevProp 4.0 software package to implement LD and MLP models. This 

controls for differences due to different software idiosyncrasies. 

2. Use Cross-Entropy as the error function for training 

3. Use QuickProp as the optimization algorithm 

4. Use weight decay during training 

5. First train using 75% of training dataset. Use the remaining 25% of the 

training dataset as a ‘holdout’ Test Set, which is used to determine a stop 

training point in terms of a training error ‘Target Value’. Repeat 5 times and 

average the obtained ‘Target Values’. 

6. Re-train using 100% of the training dataset. Stop training when training error 

reaches the ‘Average Target Value’. 

7. Use the above procedures to train a Logistic Regression model (no hidden 

units = Linear Discriminant (LD)) and eight MLP neural network model with 

2 to 9 hidden units.  

8. Use AIC to select one model from the eight MLP models as the ‘best’ 

9. Statistically compare the bootstrap corrected Az values of the Logistic 

Regression model and the selected MLP model using Hanley and McNeil’s 

[1983] formula. 

10. Optionally, use an independent test dataset, to estimate the future performance 

of the classifier with new cases.           
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