
  

Chapter 2 

ARTIFICIAL NEURAL NETWORKS 
 

 

Artificial Neural Networks (more commonly, and hereafter, referred to as neural 

networks) are a recently developed and fundamentally new approach to computing and 

artificial intelligence, which is inspired by the functioning of neurons in the brain. The 

neural network approach to artificial intelligence differs radically from the “Expert 

System” approach outlined at the end of the last chapter. The expert system approach is 

based upon the elucidation (from a clinician or other expert) and application of an 

appropriate set of rules to the solution of a problem, such as clinical diagnosis.  Neural 

networks on the other hand are based on the observation that animals with a nervous 

system (i.e. a network of interconnected neurons) can make behavioural adaptations to 

their local environment by learning responses to stimuli. 

 

Some responses to stimuli, such as knee jerk reflex in humans (where the leg moves 

forward in response to a small hammer tap at the base of the knee) are clearly hardwired 

into the Central Nervous System (CNS) prior to birth. The knee jerk reflex occurs when 

a tap stimulates receptor neurons located in a leg muscle, above the knee. These 

receptor neurons synapse onto sensory neurons, which connect from the leg to the spinal 

cord. In the spinal cord these sensory neurons synapse onto motor neurons, which inturn 

synapse onto muscle cells in the leg, below the knee. An appropriate level of stimulation 

of receptors at one end of this neural circuit leads directly to contraction of muscles at 

the other end. As a result of these neural connections a knee jerk response exists.       

13 



 Chapter 2    Artificial Neural Networks   

However many animals with a CNS demonstrate responses to stimuli which cannot be 

explained as a result of a set of “hardwired at birth” neural connections such as those 

which underlie the knee jerk reflex response. They demonstrate specific responses to 

specific stimuli, which could only have been learned in the context of their environment 

and experiences. They can develop new responses to stimuli, as demonstrated in the 

famous classical conditioning experiment of Pavlov, in which a dog learned to salivate 

in response to a bell. The existence of learning of this kind implies that connectivity 

within the nervous systems of such animals is to some extent plastic, in the sense that 

new sets of connections, which create new stimulus-response circuits, can somehow be 

created. The neural network approach to artificial intelligence is based upon the attempt 

to harness the learning properties of networks of interconnected neurons, to develop 

solutions to practical problems such as medical diagnosis, amongst other things.   

 

An artificial neural network is a network made up of simulated "artificial neurons", 

called units, that are multiply interconnected with one another (see figure 2.1). Each unit 

exhibits behaviour that is similar to the behaviour of a biological neuron. A unit can 

have both excitatory and inhibitory inputs. Units sum their inputs and if this sum 

exceeds a given threshold, the unit fires an output. If the sum of the inputs fails to 

exceed the threshold value then the unit does not fire. This phenomenon in biological 

neurons has been termed the "all or none principle". Many connection configurations 

(topologies) of these artificial neurons into networks are possible. One configuration, 

the Multi-Layer Perceptron, which is described below is the one most commonly 

applied to Clinical Decision Making problems [Cross, Harrison & Kennedy, 1995; Price 

et al, 2000].  
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2.1  The Multi-Layer Perceptron 
 

A Multi-Layer Perceptron (MLP) is a Neural Network configured by connecting layers 

of units, such that the outputs of units in one layer fully interconnect with the inputs of 

units in the next layer. The most common number of layers in a MLP is three (see 

Figure 2.1). The first layer, which is called the Input Layer, fires its units according to a 

set of inputs external to the network, which is called the Input Pattern. In the second 

layer, called the Hidden Layer, each hidden layer unit receives an input connection from 

each input layer unit. The last layer, is called the Output Layer, each output layer unit 

receives an input connection from each hidden layer unit. In neural networks that have 

more than 3 layers, the additional layers are nominated as hidden layers. 

 

 

Figure 2.1  A Multi-Layer Perceptron Artificial Neural Network 

 

For units in hidden and output layers, each input connection (the value of which is 

always either 1 or 0, since these are the only possible values of the output of another 
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unit which has either fired [1] or not fired [0]) is multiplied by a specific connection 

weight to give a weighted input. If the sum of these weighted inputs exceeds a threshold 

(called the firing threshold) then that unit fires (generates an output). If the weighted 

sum does not exceed the threshold then that unit does not fire (does not generate an 

output). Thus the firing pattern of the MLP as a whole depends only on two things: the 

input pattern and; the set of weights (across the entire MLP) used by units to weight 

their input connections. 

 

In the Central Nervous Systems of animals, networks of biological neurons encode 

learning by modifications to their firing patterns in response to stimuli. These changes 

in firing patterns that mediate learning are in turn mediated by changes in the 

connection strength of biological synapses, the points at which information is 

transmitted from one neuron to another. This form of learning has been termed Hebbian 

Learning, after the person who first proposed it, Donald O. Hebb in his 1949 book The 

Organisation of Behavior: A Neuropsychological Theory [Hebb 1949].  In an artificial 

neural network, such as an MLP, each unit assigns a mathematical weight to each of its 

inputs. This mathematical weight is the equivalent of the connection strength of a 

synapse. Just as learning in brains is a function of alterations in the connection strength 

of synapses, learning in artificial neural networks is a function of alterations in the 

mathematical weights each unit gives to each of its inputs. Similarly these alterations in 

input connection weights can lead to changes in the firing patterns exhibited by the units 

and by the network as a whole.  A full technical exposition of learning by MLPs is 

contained in Appendix 2. A briefer less technical discussion takes place in the next 

section.  
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2.2  Back-Error Propagation 

For an artificial neural network, such as an MLP, to have the ability to encode learning, 

it requires some mechanism whereby the connection weights (hereafter referred to as 

only as weights) assigned by a unit to each of its inputs can be appropriately modified in 

response to some external stimulus. The Back-Error Propagation algorithm (Werbos, 

1974) is the most commonly used process by which the weights are altered so as to 

encode learning [Dayhoff 1990, Bishop 1995, Reed & Marks, 1999].  

 

During the training phase (i.e. the successive trials during which learning occurs) a 

neural network is presented with a large set of input patterns (the training set), one at a 

time. Each time it is presented an input pattern the neural network generates an output 

pattern according to how the input pattern causes units to fire in the hidden layer and 

how these in turn cause units to fire in the output layer. The neural network is then also 

presented with the correct answer  (i.e. what its output pattern should have been). If the 

network's output pattern and the correct output pattern do not match then Back-Error 

Propagation begins. Commencing with the final output layer and then proceeding 

backwards through the network layer by layer, the weights of each unit are adjusted by a 

small amount (called the delta value), so that next time the same input pattern is 

presented it will be more likely to produce the correct output pattern. The cases in the 

training set are presented many times (often thousands of times) with all the possible 

combinations of inputs and correct outputs being presented many times. The training 

phase continues until the neural network achieves a predetermined rate of accuracy 

called criterion (e.g. 99% correct responses) with the training set. Once criterion has 

been achieved, the training phase is terminated and the neural network is switched into 
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production mode. That is, the weights are no longer adjusted, they are frozen at the 

values that produced the criterion accuracy, and the network can be put to use in the real 

world classifying cases where the answer is unknown. Such Back-Error Propagation 

Multi-layer Perceptron neural networks have been applied to a wide variety of pattern 

recognition problems, such as handwriting recognition, speech recognition, text to 

speech translation, image analysis, and medical diagnosis  [Dayhoff, 1990].  

 

2.3  Pattern Recognition by Multi-Layer Perceptron Neural Networks 
 
Traditional computer applications such as word processors, spreadsheets, accounting 

packages or hospital patient databases are based upon the ability of the traditional 

computer system to manipulate and store data. Essentially, all traditional computing 

applications involve only the manipulation and storage of data. The advent of neural 

networks makes possible a new kind of application, those that involve pattern mapping. 

What a Multi-Layer Perceptron neural network does is take one pattern (an input 

pattern) and from that produce another pattern (the output pattern).  After successful 

training it does this reliably, and is able to discriminate between many different input 

patterns, producing the correct output pattern for each one.  

 

From a practical standpoint, a Multi-layer Perceptron can be conceptualised as a pattern 

mapping black box. The exact details of what goes on inside the box do not matter, as 

much as the fact that a particular input pattern will always elicit a particular output 

pattern. The sorts of problems, which could be considered as applications that neural 

networks can help to solve, are those that can be conceptualised as a pattern recognition 

or pattern-mapping problem. The “black box” conceptualisation of neural networks has 
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caused much consternation1 amongst those more used to statistical and/or other 

classification techniques, which take an explicit modelling approach. However as we 

shall see later in this thesis, a black box approach may produce reasonably good results 

in some problems, but a more general framework, which looks inside the black box and 

reconciles MLPs with statistical and other approaches is required for their intelligent 

application [Cheng & Titterington 1994, Ripley 1994, Sarle 1994, Bishop 1995, Reed & 

Marks 1999, Hastie et al 2001].  

  

Dayhoff [1990] lists some of the areas in which MLPs have and can be applied. On this 

list she includes such things as weather forecasting, financial analysis (e.g. which loan 

applicants should be approved), image analysis (i.e. computer vision, a machine being 

able to identify objects and actions in context, for example spotting tanks in satellite 

images or recognising human emotions by facial expression in video images), fault 

diagnosis in machines and industrial processes, automated control, intelligent robots that 

can be taught physical tasks (e.g. welding a car body, moving in an unfamiliar terrain or 

space), speech recognition (i.e. deciphering meaning from the spoken word), text 

recognition (i.e. deciphering meaning from written text), handwriting recognition (e.g. 

handwritten postcode recognition on mail), artificial speech (text to phoneme 

translation), and medical diagnosis.  

 

 

 
 
 
                                                           
1 For Example: a number of letters criticising the “black box” nature of neural networks appeared in the 
journal Lancet as letters in issues following the publication of a paper by Cross et al [1995], which 
described the use neural networks for clinical decision making in medicine 
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2.4 The Use of Neural Networks in Diagnostic Medicine 
 

One of the first diagnostic neural network applications developed in medicine is that 

described by Baxt [1990].  This study examined the performance of a neural network 

for the differential diagnosis of patients with acute myocardial infarction from those 

without, amongst patients presenting to an emergency department with chest pain. The 

neural network was a four-layer back-error propagation MLP. The input layer had 20 

units, then two hidden layers of 10 units each and 1 unit in the final output layer.    

 

The 20 variable input data set is described, in Table 2.1 below. 

History Past History Examination Electrocardiogram 
Age Past Acute MI Jugular venous distension 2 mm ST elevation 
Sex Angina Rales 1 mm ST elevation 
Location of Pain Diabetes  ST depression 
Response to 
nitroglycerine 

Hypertension  T wave inversion 

Nausea & vomiting    
Diaphoresis    
Syncope    
Shortness of 
Breath 

   

Palpitations    

 
Table 2.1:  Input variables used by Baxt [1990] to diagnose acute myocardial 

infarction  
 
 
The data used to train and test the network consisted of 356 patients, of whom 236 did 

not have acute myocardial infarction and 120 did have infarction. Half this dataset was 

randomly chosen as the training set (N = 178, 118 without acute myocardial infarction, 

60 with). After training, the other half of the dataset was used for cross validation. In the 

cases that the network had not previously seen, the network performed with a sensitivity 

of 92% and a specificity of 96%. 
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This study is a good example of how neural networks can be applied to a clinical 

decision making problem. In 1990, when the study was published, it was one of only 

several that had been published up to that date.  Now, in 2002, there is a published 

literature of hundreds of studies of neural networks applied to clinical decision-making 

in medicine. For the purposes of exposition, some of the studies published in the 

medical literature, during the past decade, are presented in Table 2.2 below. 

 

Area Study 
 
Diagnosis of 
Myocardial 
Infarction 

Baxt [1996] In a replication of his earlier study Baxt [1990], a 
neural network was trained on 351 patients hospitalised for 
suspected myocardial infarction. It was then prospectively tested 
on 331 consecutive patients presenting to an emergency 
department with anterior chest pain. The network was directly 
compared to the diagnoses of emergency department physicians.  
The network achieved a sensitivity of 97% and a specificity of 
96%. Physicians achieved a sensitivity of 78% and a specificity of 
85%.  
 

  
Furlong et al [1991] trained a neural network to predict acute 
myocardial infarction using data on cardiac enzymes as inputs. 
Compared to a pathologist's interpretation of the same data, the 
network correctly classified 100% of cases (n=24) and 93% of 
non-cases (n=29). Compared to cardiologists' diagnoses made 
from echocardiograms, the network correctly classified 86% of 
cases (n=14) and 33% (n=3) of non-cases. Compared with 
diagnosis made on autopsy the network correctly classified 92% 
of cases (n=26) and 67% of non-cases (n=6).  
 
 

 Baxt et al. [2002] studied 2076 who had MI ruled out and 128 who 
had sustained MI, who were consecutive patients presenting to an 
emergency department with anterior chest pain over an 18 month 
period. Using the neural network previously developed by Baxt 
[1990], 121 of the 128 were correctly identified (95% sensitivity) 
with a specificity of 96%.  
 

 
Diagnosis of Breast 
Cancer  

 
Astion & Wilding [1992] trained a network to differentially diagnose 
patients with malignant breast cancer from those with benign 
conditions on the basis of patient's age and nine biochemical 
variables. The network attained 80% accuracy during training on a 
set of 57 patients, 23 with malignant cancer and 34 with benign 
breast conditions. On a cross-validation with another 20 patients it 
correctly classified 84%. A Discriminant function derived from the 
original 57 cases correctly diagnosed only 75% of patients.  
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Diagnosis of 
Alzheimer’s Disease 

 
Kippenhan et al  [1992] trained a network to diagnose Alzheimer's 
disease from PET scans. The network achieved an area under the 
ROC curve of 0.85 compared to that of a clinical expert 0.89. The 
neural network also greatly outperformed the statistical method of 
Discriminant Analysis.  
 
 

Prediction of 
allograft rejection in 
Liver 
Transplantation 

Hughes et al [2001] studied rejection of a transplanted liver in the 
period 3 months post-transplant in 124 consecutive transplants. 
The predictor set consisted of pre-transplant clinical and 
biochemical data. The neural network obtained an Area under the 
ROC Curve of .902 and had a sensitivity of 80% and a specificity 
of 90%. The neural network outperformed clinical judgement 
based upon the same set of input variables.  
 

Diagnosis of 
microcalcifications 
in mammograms 

Markopoulos et al. [2001] studied 108 malignant and 132 benign 
cases. A neural network was trained on several physical 
parameters of the microcalcifications to classify mammograms 
into malignant and benign categories. The neural network 
achieved an Area under the ROC Curve of .937 compared to .810 
for physicians. This difference was statistically significant.  
 
 

Prediction of Stage 
in Prostate Cancer  

Han et al [2001] studied 5744 men treated for cancer of the 
Prostrate. Trained a neural network to predict organ confinement 
and lymph node involvement status using clinical and biochemical 
parameters as inputs. The neural network performed better than 
the widely used standard practice of using a nomogram based 
upon a logistic regression.  . 

 

Table 2.2:  Some Neural Network Applications in Medicine 

 

The studies cited in Table 2.2 indicate that neural networks are being widely considered 

as aids for clinical decision-making and diagnostics. 
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2.5  The place of Neural Networks in Clinical Decision Making 

Though clinical decision making by clinicians can be dichotomously categorised as 

clinical judgement or statistical, to do so denies the reality that there are a range of 

decision-making practices. A more realistic schema is to see clinical and statistical as 

the extreme poles of a dimension of decision-making tasks. At one end is pure clinical 

decision making whereby both the information gathering and the decision-making are 

relatively unstructured. At the other end is pure statistical decision making whereby 

both information gathering and decision-making are mechanical, and there is the 

important proviso that the decision-making component is directly derived from an 

empirically derived relationship. In between there is a continuum of practices whereby 

there is increasing mechanisation of both the information gathering and decision making 

component. Such mechanisation by and of itself will increase the reliability of decision 

making by clinicians, but it will not necessarily increase the validity or accuracy of their 

decisions. Only the addition of an empirically derived decision rule ensures that the 

decision is valid. 

 

To this schema we can now also add neurocomputational decision-making. This is the 

practice of making a clinical decision on the basis of a neural network. 

Neurocomputational decision-making is as yet an unknown quantity. We know from a 

large database of studies that statistical decision-making is the best method overall (in 

terms of prediction), and that structured and automated decision-making is not as good, 

but superior to clinical decision-making. However we do not know the relative ranking 

of neurocomputational decision-making amongst these alternatives.  Table 2.3, below, 

sets out a classification of clinical decision-making practices.  
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Type of 
Decision Making 

 
Definition 

 
Example(s) 

Reliability  
& Validity 

 
Clinical Judgement 

The clinician makes 
decisions using only 
their own judgement. 
Information gathering is 
relatively unstructured 
 

Deciding that a patient has 
schizophrenia on the basis of 
interview, presentation and 
background information 
 

Relatively 
Low 

 
Structured Clinical 
Decision Making 

The clinician makes 
decisions using a 
structured technique. 
The rules for decision-
making are not 
empirically derived.  
Information gathering is 
unstructured or in some 
cases semi-structured 
 

Deciding that a patient has 
schizophrenia on the basis 
that they fit DSM-IV criteria  

 
Higher

 
Automated Clinical 
Decision Making 

The clinician uses 
structured (or 
computerised) interview 
and/or information 
gathering, that in turn 
elicits a diagnosis and/or 
recommendations based 
on a structured decision 
making rule that has not 
been empirically 
derived. 

Using the Computerised 
version of the Composite 
International Diagnostic 
Interview (CIDI) [Andrews 
1991] 
 
Structured interviews that 
elicit DSM-IV or ICD-10 
diagnoses. 
 
Expert Systems e.g. MYCIN 
[Shortliffe 1976] 
 

Higher
Still  

 
Statistical Decision 
Making 

The clinician uses 
structured information 
gathering and passes on 
the information to an 
empirically derived 
formula or rule, which 
generates a diagnosis or 
recommendation.  

IQ testing and classification,  
 
Parker & Hadzi-Pavlovic’s 
[1993] Sign based index for 
Melancholia, 
 
Einfeld and Tonge's [1993] 
Developmental Behaviour 
Checklist (DBC) cutoff for 
presence of psychiatric 
problems in intellectually 
disabled children and 
adolescents. 
 

Highest 

 
Neurocomputational 
Decision Making 

The clinician uses 
structured information 
gathering and passes on 
the information to a 
neural network trained 
to make diagnoses 
and/or 
recommendations 
 

Baxt's neural network for 
diagnosis of acute 
myocardial infarction in 
casualty ward patients Baxt 
[1990,1996,2002] 

Unknown 

Table 2.3:  Decision Making Practices by Clinicians 
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Figure 2.2 Conceptual Map of Clinical Decision Making Practices 

 

 The Conceptual Map in Figure 2.2 shows where the different practices, defined in Table 

2.3, lay in a conceptual space defined by the degree of structure in Information 

Gathering, the degree to which the practice has an empirical basis and the overall 

Reliability and Validity of the practice. One of the objectives of this thesis is to 

determine the place of Neural Networks on this map. 

 

 

 

 

 25



 Chapter 2    Artificial Neural Networks   

2.6  Neural Networks from a Statistical Perspective  

Psychologists and computer scientists initially developed neural networks, but 

statisticians have now become interested in them as well. A number of statistical writers 

have pointed out that neural networks can be readily interpreted within a statistical 

framework [White 1989, Ripley 1994, Sarle 1994, Weiss & Kulikowski 1991, Florio et 

al 1994, Bishop 1995, Reed & Marks 1999, Hastie et al 2001] and that they are very 

similar to statistical pattern recognition techniques such as Projection Pursuit 

Regression and Multivariate Adaptive Regression Splines [Ripley 1994, Sarle 1994]. 

 

Linear Classifiers 

The most commonly used statistical approach to developing solutions for clinical 

decision-making problems is to use a linear classification technique [Dawes & Corrigan 

1974]. In its simplest form, when the clinical decision is binary and it can be made on 

the basis of a single score on some variable, this involves finding the optimal cutoff 

value on this variable for classifying those with values at or above the cutoff into one 

group and those with values below into another. 

 

Figure 2.3      Classification using a cut-off on a single variable 
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When there is more than one discriminating variable, a Linear Discriminant Function 

Analysis (LDFA) or a Logistic Regression (LR)2 can be used to combine the variables, 

using a weighted linear combination, into a single scale and then determine a cutoff on 

this new composite scale to classify cases into one group or another [McLachlan 1990]. 

LDFA is a parametric technique that uses the data to estimate parameters of the 

underlying distributions and then apply Bayes theorem to delineate a decision boundary, 

whereas LR directly estimates conditional class membership probabilities. Both 

techniques are optimal in the case of classes which have multivariate normal 

distributions with equal covariance matrices. If the population being sampled is known 

to have such distributions then LDFA is more efficient, otherwise LR should be 

preferred to LDFA for Linear classification [Hand et al 2001, Kiernan et al, 2001]. 

 

Figure 2.4  Classification using a linear combination of two variables. 

                                                           
2 A common use of Logistic Regression is to determine the relative contribution of individual input 
variables to group membership. However a Logistic Regression can also be used to derive an equation 
that can be used to predict group membership on the basis of the input variables. That is, it is used as a 
Discriminant Function and as a method to derive a classification rule.    
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Figure 2.4 above demonstrates how a linear combination of two variables can produce 

better classification (less overlap between the two distributions and therefore fewer 

cases are misclassified) than either of the single clinical variables alone. The principle 

displayed in Figure 2.4 can be generalised to any number of variables greater than two. 

The basic aim of both LDFA and LR is to find a linear combination of variables which 

maximises classification, by minimising the overlap between the two groups. 

 

The Bayesian Classification Decision Boundary 

Every classification problem has a theoretically optimal solution known as the Bayesian 

Classification Decision Boundary 3[McLachlan 1990]. Implicit in making use of a linear 

approach is an assumption that the best approximation to the Bayesian Classification 

Decision Boundary, for a given problem, is a linear function (a straight line in 2 

dimensions or linear hyperplane in higher dimensional spaces). When there is only one 

variable on which to make the clinical decision this assumption is always necessarily 

true (see Figure 2.3). However when there are two or more variables the assumption 

may be true (as in Figure 2.4), but is not always necessarily true (as in Figure 2.6). For 

such multivariate classification problems the Bayesian Classification Decision 

Boundary can, in theory be any function, a linear function or a non-linear function.  

 

 

                                                           
 
3 If we know the exact distributions of the classes being classified then we can calculate the boundary, as 
the set of point where the probability of belonging to one or another class changes. However we do not 
normally know these distributions and therefore cannot know the Bayesian Classification Decision 
Boundary in most practical problems. We only know it exists and that it represents the absolute best 
possible classification decision boundary for a particular problem.  
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For all classification problems, and therefore all Clinical Decision-Making problems 

that are classification problems, all empirical classification techniques (such as LR or 

MLP type Neural Network) are attempts to approximate the Bayesian Classification 

Decision Boundary with a mathematical function that has been derived from a dataset. 

How accurately a classifier performs, depends upon how accurately the Classification 

Decision Boundary produced by the classifier is able to approximate the Bayesian 

Classification Decision Boundary [Ripley 1994, Sarle 1994, Bishop 1995, Reed & 

Marks 1999].  

 

Piece-Wise Linear Approximation of Non-Linear Functions   

When viewed from a statistical perspective, MLP-type Neural Networks are a non-

linear function approximation technique. When applied to a classification problem, 

which has a non-linear Bayesian Classification Boundary, they can be used to 

approximate the non-linear classification boundary and provide a basis for 

classification. The approach they take to non-linear function approximation has been 

called piece-wise linear approximation [Ripley 1994, Sarle 1994, Weiss & Kulikowski 

1991, Florio et al 1994, Bishop 1995, Reed & Marks 1999]. That is the non-linear 

function is approximated, by the fitting of a number of linear functions that shadow the 

form of the non-linear function (see Figure 2.5. below).  
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Figure 2.5  Piece-wise linear approximation (straight lines in grey) of a non-
linear function (curve in black) 

      

        

   a)     b) 

Figure 2.6 Artificial Classification Problem:  
 
a) Distribution plots for two classes: 

Diseased cases (n=300) are 
denoted by diamond shapes (top, 
bottom and left of graph), Non-
Diseased cases (n=300) denoted 
by stars (centre of graph). The x 
and y axes represent scores on 
two symptom scales, 

 

b) The same distribution plot with the 
neural network piece-wise linear 
decision boundary superimposed 
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Figure 2.6, shows how piece-wise linear approximation by a neural network can be used 

to solve classification problems, which have a non-linear Bayesian decision boundary. 

The clinical decision-making problem is to correctly classify cases using only individual 

case scores on the two symptoms x and y. The three straight lines in Figure 2.6 .b) were 

generated by the hidden units of an MLP-type neural network after it was trained on the 

cases in Figure 2.6. The lines clearly segment the cases into the diseased and non-

diseased groups. For the data in Figure 2.6, there is no single linear classification 

decision boundary (single straight line), which could solve the classification problem as 

well as the MLP has. The Bayesian Decision Boundary for this problem is a curve. The 

three straight lines, in conjunction, give a good approximation to this curved boundary.   

 

2.7  Bias – Variance Tradeoff 

The goal of training a neural network for use as a clinical decision making tool in 

psychiatry, is not to learn to optimally classify all the cases in a training dataset (which 

in theory is possible [Bishop, 1995]), but rather to build a statistical model of the 

process which generated the dataset, and so be able to optimally classify cases from the 

population from which the training dataset was drawn (Bishop 1995). Accomplishment 

of this latter goal, with neural networks, and numerous other modeling techniques, has 

been the subject of much research and much theory development, over the past two 

decades. 

 

A seminal contribution, to the area of modeling with neural networks, was made by 

Geman et al [1992], in a paper which examined the application of a decomposition of  
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Mean Square Error (MSE, a measure of regression fit) into two components bias and 

variance, as it applies to neural networks. 

 

MSE, bias and variance are quantitative attributes of specific statistical models. 

 

MSE, is the average squared error (difference between predicted and actual value) of a 

model, measured on a large independent test dataset. 

  

Bias is the averaged difference between a model and the target function, inherent in a 

population, which the model is attempting to approximate. A small bias indicates the 

model approximates the target function well (across the measurement range of the 

predictors) and produces on average (across many derivation samples) good predictions 

of the value of the target output variable. A large bias indicates the opposite. Geman et 

al [1992] measured bias (see formula 2.1 below) by calculating the average error on a 

large test set (of size N = 600), of a number of versions (M = 50) of the same model 

(derived by training the model on 50 (M) training datasets (of 200 cases each) sampled 

randomly from a pool of 600 training cases). 

 

Variance is the averaged difference between different versions of the same model which 

arise due to training on different training datasets. A small variance indicates that the 

model will tend to produce the same or similar value(s) in response to the same set of 

values of the input variables, regardless of which training dataset (sampled from a 

population) is used to derive values for the parameters of that model. In essence all 

training datasets will result in the same or very similar set of model parameter values for 
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that model. A large variance indicates the opposite.  Geman et al [1992] measured 

variance (see formula 2.1 below) by calculating the average difference on a large test set 

(of size N = 600), between a number of versions (M = 50) of the same model (derived 

by training the model on the 50 training sets, sampled randomly from a pool of 600 

training cases), and the average response of all these models (see below for how this is 

calculated). Equation 2.1 below presents the equation used by Geman et al [1992] to 

calculate MSE, bias and variance and also shows the interrelationships between these 

terms.   
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       |_____________|          |__________|        |_______________|  

                        MSE     =         bias2                 +           variance 

 

Where : 

  N  is the number of cases in the test dataset 

          i   is an index for cases in the training dataset, i ranges from 1 to N 

  M is the number of training datasets used 

   j is  an index for training data sets, j ranges from 1 to M 

  ti   is the true or target value of the ith case in the test dataset  

yij   is the output of the model trained on the jth training dataset to  
the ith case in the test dataset 

 

∑
=

=
M

j
iji y

M
y

1

_ 1    is the average output of the M models derived from M   

training datasets for the ith case in the test dataset.  
 

Note:   Equation 2.1 above has been adapted from Geman et al [1992], by Keijzer 2002  
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Figure 2.7 The relationships between Mean Square Error measured on a 
Training Dataset, Mean Square Error measured on a Test 
Dataset, Bias and Variance, as a function of the progress of 
training through successive iterations of a training algorithm such 
as Backprop. (Adapted from Gemen et al [1992]).  

 

  

Using the above formula, and applying it to a dataset of 1200 handwritten digits (600 

for training datasets, 600 for the test dataset), Geman et al [1992] demonstrated firstly 

that the test dataset Mean Square Error (MSE) varies as the sum of bias squared and 

variance (according to equation 2.1) at any particular point in training, and secondly that 

as training progresses bias decreases and variance increases in such a way that Test 

Dataset MSE at first decreases and then begins to rise. As a consequence, there is point 

in training where Test Dataset MSE is at minimum. Up until this point, decreases in bias 
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have outweighed increases in variance, so the value of Test Dataset MSE has 

progressively decreased. Beyond this point, increases in variance outweigh further 

decreases in bias, and as a result, Test Dataset MSE increases. The point designated 

“Stop Training Point” in Figure 2.7, is the point at which training should be stopped, in 

order to obtain a model which generalises the best (Geman et al [1992]). If one stops 

training at any point either to the left or to the right of this point then the associated 

models will all generalise less well than the model associated with the point of 

minimum Test Dataset error. 

 

Geman et al [1992] also demonstrate that bias and variance (and therefore Test Dataset 

MSE) also vary as a function of model complexity. That is, as complexity increases 

from low to high, bias and variance behave similarly as they do in response to training 

proceeding from few to many iterations. As a consequence, Test Dataset MSE also 

behaves similarly, that is it has a minimum value at some point on the complexity 

continuum. In the case of MLP type neural networks, the common way in which to 

adjust model complexity is to vary the number of hidden units. MLPs with fewer hidden 

units have a lower complexity than those with more hidden units. These relationships 

are presented in Figure 2.8 below. 

 

 

 

 

 

 

 35



 Chapter 2    Artificial Neural Networks   

 

 

Figure 2.8  The relationships between Mean Square Error measured on a 
Training Dataset, Mean Square Error measured on a Test 
Dataset, Bias and Variance, as a function of model complexity, 
which is adjusted by varying the number of hidden units. (Adapted 
from Gemen et al [1992] and Hastie et al [2001]).  

 

 

 

The relationships and the tradeoff depicted in Figure 2.8 above are very similar to those 

depicted in Figure 2.8.   The main difference is that we have substituted complexity for 

training iterations as the x-axis of the graph. Complexity is directly related to the 

number of adjustable parameters in a model. For MLPs, an easy way to vary complexity 

is to add or remove hidden units. This adds and removes the weights of the connections 

made by those hidden units, and it is these weights which are the adjustable parameters 

of the model embodied in an MLP type neural network. The reason for the similarity of 
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effects between training and complexity is that training is, in a sense, a complexity 

realisation process. At the start of training, the weights of an MLP are initialised to a set 

of small (near zero), random values. A zero weight is effectively a non-weight or in the 

case of a model a non-parameter. In this sense, the MLP at the start of training has a low 

effective complexity. As training progresses, The MLP weights are updated to minimise 

error in respect to a Training Dataset. That is they develop values, which depart from 

zero, and raise the effective complexity of the MLP model. The ceiling on complexity, 

that a particular MLP model can achieve, in training, is determined by the number of 

parameters it contains. So MLPs with more parameters (usually determined by having 

more hidden units), can implement more complex models. As a consequence, we 

observe similar relationships between bias, variance, and Test Dataset error in relation 

to both training and complexity. The model selection point, in Figure 2.8, is the 

minimum point of Test Dataset error. The model at this point on the complexity 

continuum represents the best model, in terms of generalisation to future cases drawn 

from the same population. 

 

Figure 2.8 is misleading in one respect: It suggests that the minimum point of Test 

Dataset Error, the best model, is always at a level of complexity beyond the lowest 

possible. In the case of neural networks, the least complex model is a linear logistic 

regression model (i.e. an MLP with no hidden units, where inputs connect directly to an 

output unit). It is of course possible, in fact common, that the linear model is the best 

model. In which case progressing to models of any higher complexity causes the 

increase in variance to exceed the decrease in bias obtained, and hence result in models 

with inferior performance, which have a greater Test Dataset Error. In such cases the 
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minimum lies at the beginning of the Test Dataset error curve, at the minimum level of 

model complexity (a linear model) and this is the also the Model Selection Choice 

Point. 

 

Figure 2.7, on the other hand is not misleading in the same respect. The same situation 

would almost never occur in respect of training (unless, the data was generated by a 

random process), a newly initialised model would have a very high bias, which would 

drop rapidly in the initial few iterations of training. At the same time, in these initial few 

iterations, the variance would begin to rise, but the rate of rise would at first be slow. As 

a result, Test Dataset Error is likely to initially fall, reach a minimum value and then rise 

once the decrease in bias slows and the increase in variance quickens.      

 

      

Figure 2.9 Test dataset MSE by Complexity curves for 3 hypothetical 
classification problem explored using an LR model and seven MLP 
models of varying complexity (varied by adjusting the number of 
hidden units in the MLP model)    
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Figure 2.9 above presents 3 hypothetical classification problems explored using an LR 

model and several MLP models of varying complexity. The model selection point 

(MSP1) for Problem 1 is an LR model, which is the least complex of the models 

explored. For Problem 1 the amount of decrease in bias, which results from the 

increased complexity of an MLP-2 (MLP with 2 hidden units) model, is outweighed by 

the associated increase in variance.  For Problem 2, the MLP-2 model has a lower MSE 

than the LR model indicating that in this problem the reduction in bias outweighs the 

increase in variance associated with increasing the model complexity by moving from 

an LR model to an MLP-2 model. However, increasing the complexity of the MLP 

model beyond 2 hidden units results in increases in variance which outweigh their 

associated reductions in bias. For Problem 3, decreases in bias which outweigh 

increases in variance occur for increasing levels of model complexity up until an MLP-5 

model, with the converse applying after that.  

 

In practice, we can use our knowledge of the possible situations depicted in Figure 2.9 

to search for a good model amongst a range alternatives. We do this by measuring the 

performance of each model on a large independent test dataset, arranging these results 

on a complexity continuum and then selecting a model which seems lies at a turning 

point of the performance curve.  This will be a minimum or a maximum depending 

upon how performance is measured, in terms of error or accuracy.  
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Implications for the modeling of clinical decision making problems 
 
The general aim in developing a good classification model, for a clinical decision 

making problem, is to obtain a model, which has the lowest possible test dataset error. 

Since test dataset error is a simple additive function of bias and variance, then ideally 

what we need to do is to attempt to arrive at minimal values for both. However, as 

shown in Figures 2.8 and 2.9, it often the case that an action which decreases the value 

of one, will also increase the value of the other. Geman et al [1992] liken this to the 

uncertainty principle in quantum physics. Thus as iterative training progresses bias 

decreases and variance increases. Similarly, if we increase the complexity of an MLP 

type neural network model by increasing the number of hidden units, then again there 

will be a decrease in bias accompanied by an increase in variance. 

 

Importantly though, the growth and decay curves of variance and bias with respect to 

training and complexity are problem and training dataset dependent. The crucial factors, 

which determine the location of the minimum on the test dataset error curve, are the 

rates of change of bias and variance. The test dataset error minima, is located at the 

point where the rate of increase in variance begins to exceed the rate of decrease in bias. 

 

One strategy for attempting to reduce test dataset error is to increase the sample size of 

the training dataset. Doing this will shift the variance growth curve to the right with 

respect to both training and complexity. This is because each trained model is now more 

likely to be similar to the average of that model (the central limit theorem predicts this 

behaviour). A consequence of this is that a lower bias value may be reached before the 

cross-over of rates of change of the curves is encountered and also the cross-over point 
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may correspond to lower values of both bias and variance. Added to this more data 

points will better represent finer details of the features of the target function (if they 

exist), allowing a sufficiently complex model to shadow the population target function 

better, that is reduce bias. Thus, test dataset error (the sum of bias and variance) is likely 

to be lower for a training dataset of increased sample size.                

 

In figure 2.9, the model complexity of an MLP is varied by adjusting the number of 

hidden units, which in turn adjusts the number of model parameters (MLP Weights). 

However, there are other schemes for adjusting the effective complexity of the model 

embodied in an MLP type neural network. We have already pointed out that stopping 

training early, at a point where generalisation appears to be maximised, is a way of 

reducing the effective complexity of the model. At this point, the weights have been 

adjusted more under the influence of bias, than under the influence of variance.  Some 

of the weights are still relatively close to their near zero initialisation values, and are, in 

some sense, non-parameters in terms of the model. This reduces the effective 

complexity of the model to that of a model with fewer parameters.      

 

Another scheme is to implement regularisation as part of the algorithm, used in training, 

to update the weights. This is commonly known as Weight Decay. In such a procedure, 

a proportionate amount of the value of each weight is subtracted from the value of the 

weight, after each weight update. This introduces a tendency into the training algorithm 

for weights to reduce in magnitude, as training progresses. The end result is that weights 

which do not grow in magnitude, in response to the Training Dataset, as training 

progresses, will tend towards zero. Thus, unneeded weights are systematically 
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eliminated (zeroed) by training and the effective number of model parameters (the 

effective complexity) is lowered. 

 

There several important conclusions about the application of neural networks (and other 

statistical classifiers) that can be drawn from consideration of the bias–variance 

tradeoff. Firstly the general nature of the relationship between bias and variance in 

statistical models for classification based upon MLP type neural networks is one in 

which both contribute to generalisation error. At the level of an individual MLP model, 

trained on a fixed size training dataset, a decrease in one will result in an increase in the 

other. In practice this means that generalisation error can never reach the absolute 

Bayesian minimum (which in itself introduces a irreducible level of error), for a 

particular problem, as it will be added to by an amount of error, dependent upon the 

amounts of bias and variance. In some cases, the size of this additional error created by 

bias and variance may be relatively large. 

 

Secondly, improvement in the generalisation accuracy of a classifier, under 

development, may be obtained by: 

 

• Increasing the training dataset sample size.  

• Using the minimum turning point value obtained by measuring error on a test 

dataset as a criteria to stop training and/or choosing a complexity level  

• Use a regularisation scheme, such as weigh decay which reduces the effective 

complexity of the model. 
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Thirdly, the training dataset size, the point at which we stop training, model complexity 

and input dimensionality are, in some sense, an interrelated set of hyperparameters that, 

in combination, define a manifold surface with respect to generalisation error, in a 

solution space, not dissimilar to the way in which the weights of an MLP define an error 

surface. As such, this surface is likely to have regions of minima which define ‘good 

solutions’. Underlying this error surface in this hyperparameter defined solution space, 

there would be bias and variance surfaces, which directly determine the shape of the 

overlying error surface. Because all these hyperparameters trade-off against each other, 

then the ‘good solutions’ regions will tend to lie around the origin of the space. As such, 

one would not consider a combination of small training dataset size, high 

dimensionality, high complexity and training continuing until the training error reached 

a minimum, as a path to a good solution. The hyperparameters need to traded-off in 

some fashion as part of the model search strategy. 

Finally, the differences between models being compared can be in kind as well as in 

complexity. Different kinds of models may exhibit different levels of bias at the same 

level of complexity. Variance on the other hand is more directly related to a model’s 

complexity (or the number of parameters of a model to be more exact). Thus one kind 

of model might perform better than another, on a particular dataset, though both are 

equally complex, because in relation to the problem at hand it exhibits less bias and 

therefore less error. It has been a common finding of reviews (e.g. Ripley 1994, 1996, 

Michie et al 1994) which have applied a number classification models to a panel of 

datasets that some methods do better on some datasets but no method comes out best. 

Ripley [1996] describes this phenomena as “every method has its day”.   
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2.8  Studies comparing Neural Networks with Statistical Methods in 
Medical Decision Making Problems 
 
There are now a large and increasing number of studies in the medical literature, which 

use clinical datasets, and which have compared the performance, as classifiers, of a 

neural network(s) to logistic and other regression models [Grant et al 2001, Sargent 

2001]. In some studies, a neural network model has been found to classify better than a 

regression model, in some other studies the two are found to be equivalent, and in a 

small number of studies a regression model classifies better than a neural network 

model.  On face value this would seem to agree with the conclusion of our consideration 

of the bias-variance tradeoff: that whether a particular model classifies better, the same 

or worse on a dataset than another model depends upon how both these models tradeoff 

bias and variance on the dataset. In such a situation we might conclude that all the 

studies which found in favour of a neural network are examples of datasets where the 

bias-variance tradeoff was better for the neural network model than for the regression 

model. However this is not necessarily the case. Publication bias might account for 

some or all these studies. Therefore a more detailed review of this literature, which 

takes publication bias into account, is warranted to elicit a clearer understanding of what 

has led to the observed pattern of results.    

In reviewing this or any similar literature we need to take account of the possible effects 

of publication biases in determining the availability of studies for inclusion in a review. 

A simplistic review would assume we have full access to all studies (or at least a 

representative sample) which have comparatively investigated neural networks and 

logistic regression models. In such a situation, when multiple studies investigate the 

same general hypothesis, we would tend to conclude that the hypothesis is true if the 
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number of studies finding in favour of the hypothesis, far exceeds the number expected 

from the application of the type I error rates. On the other hand, we would tend to 

conclude the hypothesis is false if only a small number of studies, as predicted by the 

effects of type I errors, find in favour of the hypothesis. 

However, in the real world, there are filters which prevent the publication of some 

studies and boost the publication of others. Firstly, journals, their editors and reviewers, 

are more likely to reject papers with negative findings because, they don’t highlight 

something new and the readership is less likely to be interested in reading about 

negative findings. Secondly investigators, pre-empting this bias of journal editorial 

decisions, might decide to conserve their effort and not write up and submit studies 

which have a negative finding. Both these biases also work in reverse. That is 

investigators are more likely (in fact almost certain) to write up and submit studies with 

a positive finding and journals are more likely to publish these studies.  

Studies with a positive finding, in favour of a hypothesis, can arise in two ways. Firstly 

they can occur, in very large proportion, when that hypothesis is true. Secondly they can 

occur by chance and in very small proportion, when that hypothesis is not true (type I 

error). As such it is possible that when there is strong publication bias, most of the 

spuriously significant studies are published, and most of the studies involving the same 

hypothesis, but which have a null finding, are not published. This raises the apparent 

proportion of the studies that support the hypothesis. This inturn would give an 

appearance in the literature that the hypothesis is true, at least sometimes, when fact it is 

not ever. Publication bias, of this kind, is a well recognised problem in the medical 

literature [Begg & Berlin, 1988]  
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Sargent [2001] examines the hypothesis that MLP type neural networks can in some 

circumstances classify better than a logistic regression, by analysing a set of 28 selected 

studies from the medical literature. The inclusion criteria for studies in his review were 

that: the study compared a neural network with a Logistic Regression or Cox 

Regression in a clinical application; the sample size was greater than 200; and the 

comparison was made on the basis of independent test dataset error or an equivalent 

technique (that assesses model performance on data that was not used in training or in 

model development).  He found that the neural network outperformed the regression in 

10 studies (36%), that regression outperformed the neural network in 4 studies (14%) 

and, that they had equivalent performance in 14 studies (50%).  The sample sizes of the 

studies varied from 226 to 80,600, with a median around 1,000. However, all the studies 

which found in favour of the neural network had sample sizes that were below the 

median. Of the 14 with an ‘equivalent’ finding, 11 were above median. Of the 4 with a 

finding for regression 2 were above median and 2 below. Sargent [2001] interprets this 

set of results as suggesting the possible operation of a publication bias in favour of 

neural networks, and concludes that “Both methods should continue to be used and 

explored in a complementary manner. However, based on the available data, ANN 

should not replace standard statistical approaches as the method of choice for the 

classification of medical data” (p. 1636)     

A set of 28 studies is small, and does not allow conclusions any firmer than those 

reached by Sargent [2001]. A larger set of studies may provide a firmer basis for 

evaluating the strength and pervasiveness of a publication bias as well as the potential 

role, if any, of neural networks for classification problems in medicine.      
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Using the same Medline (Ovid) search strategy and the same inclusion criteria as 

Sargent [2001], another 21 studies, published subsequently, were located. These are 

listed in Table 2.4, in a similar format as that used by Sargent [2001] in his Table 1. The 

difference being that in our Table 2.4, we have listed the actual size of the training 

dataset sample and the Validation dataset sample, to facilitate a later analysis of these 

data, whereas Sargent [2001] lists the size of total sample and the % split used derive 

training and validation datasets. Of course, these formats are interchangeable with 

simple calculations.  

In Table 2.4 below, there are 5 studies, with training datasets above the median in size, 

which have a finding in favour of the neural network. There are also another 6 studies, 

with training dataset samples sizes above 1000 which have an ‘Equivalent’ or 

‘Regression’ finding as well as ten studies with training dataset sample sizes below 

1000, which find mostly (except for one ‘Equivalent’) in favour of the neural network.  
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Citation 

 
Regression 

 
ANN 

Training 
Sample N 

Validation 
Sample  N 

 
Result 

Snow et al [2001] LR BP 28,125 9,375 NN 

Colombet et al [2000] LR BP 10,296 5,148 EQUIV 

Li et al [2000] LR BP 9,480 3,160 NN 

Di Russo et al [2000] LR  BP 5,768 4,841 NN 

Han et al [2001] LR BP 4,308 1,436 NN 

Resnic et al [2001] LR BP 2,804 1,460 EQUIV 

Kalra et al [2003] LR BP 1960 1308 NN 

Freeman et al [2000] LR BP 1,554 1,465 REGR 

Wang et al [2001] LR BP 1,253 500 EQUIV 

Clermont et al [2002] LR BP 1,200 447 EQUIV 

Finne et al [2004] LR BP 1183 592 REGR 

Finne et al [2000] LR BP 656 Leave one out NN 

Veltri et al [2000] LR BP 636 120 NN 

Ioannidis et al [2003] LR BP 504 284 NN 

Orr [2001] LR BP 490 798 NN 

Kim et al [2000] LR BP 409 183 NN 

Verive et al [2000] MR BP 394  69 NN 

Samli & Dogan [2004] LR BP 230 73 NN 

Mello et al [2001] LR BP 187 116 EQUIV 

Eldar et al [2002] LR BP 180 45 NN 

Zlotta et al [2003] LR BP 140 60 NN 

 

Table 2.4  Summary information for 21 additional articles published since 
Sargent [2001] which meet, his inclusion criteria.        

 

Figure 2.10, below, plots findings from all the studies on a graph similar to that 

presented by Sargent [2001]. Twenty one new studies have been added to Sargent’s 

[2001] original plot of 28 studies. For clarity Sargent’s [2001] original 28 studies are 

represented as open circles and the 21 new studies added in the current review are 

represented as closed circles. Also for clarity the vertical axis on each graph, which 

quantifies dataset sample size, is on a logarithmic scale. Graph a) displays the 

distributions of training dataset sample size for the three types of outcomes found by the 
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49 studies, and graph b) similarly displays distributions of validation dataset sample size 

by study outcome. 
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Figure 2.10  Distributions of study dataset sample sizes, according to study 

outcome for the combined set (Sargent’s [2001] review of 28, 
plus 21 new studies), broken down by review source     

 
 

 

Looking only at Sargent’s [2001] set (open circles) in Figure 2.10, all the studies which 

found a neural network to classify better than a regression are below the median and 

have relatively small training dataset sample sizes. By contrast the distributions of 

training dataset sample sizes of studies in the “Equivalent” and “Regression better” 

outcome categories are more centred on the median and for the “Equivalent” category 

they straddle most of the range. This “funnel” appearance, in this plot, suggests the 

operation of a publication bias in favour of neural networks [Sargent 2001].    

 49



 Chapter 2    Artificial Neural Networks   

However, looking at full set of 49 studies (combining Sargent’s 28 studies with the 21 

new studies identified in this review), a different picture emerges. The “funnel” 

appearance of the plot, noted by Sargent [2001], is no longer as apparent.  This is 

because there are now 5 newly added studies, which have relatively large training 

dataset and validation dataset sample sizes (over 1000) and which have a finding in 

favour of a neural network model in comparison with a regression model. The training 

dataset sample size distributions of the three outcome categories, using all 49 studies, 

now suggest a mixed picture. There is a preponderance of studies with small training 

dataset sample size with an outcome in favour of a neural network. But, clearly in some 

clinical applications (more specifically in some clinical datasets), with relatively large 

training dataset sample sizes a neural network based model was able to classify better 

than a regression model.  

 

If we restrict ourselves to looking only at studies with a training dataset size of over 

1,000 cases (19 studies). Four studies found in favour of an LR model, 5 found in 

favour of an MLP model and 10 found an “equivalent” result. Given the associated 

large test datasets, upon which differences between models were significance tested, it 

is unlikely that this distribution of findings is due to a publication bias. The alternate 

explanation is that the distribution of findings is due to differences in bias-variance 

tradeoffs between models when applied to the various datasets. In other words, the MLP 

model classified better than the LR model on a proportion of these large datasets.       

 

The findings of our extension of Sargent’s [2001] review are consistent with a 

hypothesis that in some cases (datasets) a neural network model is able to classify better 
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than a regression model, but that there is also a superimposed publication bias 

operating, in this literature, in favour of studies which find a neural network model to 

classify better than a regression model and this leads to an overabundance of studies 

with relatively small sample sizes and an outcome favouring neural networks. Some or 

many of these studies may have a spuriously significant finding.             

 

Sargent’s [2001] review, and our extension of it, narrowly selected only comparative 

studies and only those with a relatively good methodology. The empirical literature on 

the application of Neural Networks to Clinical Decision-Making, in general, is of much 

poorer average quality. It is highly disjointed. Many studies are one-offs which do not 

refer to or build upon other studies. The overwhelmingly typical template for studies 

involves the application of a neural network to a relatively small dataset, sometimes 

with a comparison to a traditional statistical technique (such as Logistic Regression), 

and only in a small proportion is some form of cross-validation used. The choice of 

predictors and criterion variables is often idiosyncratic, so that even in the same clinical 

decision making problem domain there is a great deal of variety. This makes it hard to 

compare results between studies or to perform any kind of systematic review or meta-

analysis on a problem-wide basis. There are few threads in this literature. Most studies 

fail to consider the larger literatures which exist on Clinical Decision-Making and on 

Discrimination and Classification in Statistics. The generally poor quality of this 

literature is highlighted by Schwarzer et al [2000], who provide an informative review 

on misuses of the neural networks in oncology 
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Following Sargent’s [2001] example, we have been able sidestep the poor quality of the 

bulk of the literature by selecting only studies with a good comparative methodology 

and by focusing our review only on the single issue of a direct comparison between 

MLPs and LR (mostly) on medical datasets. Our conclusion, based on this review, is 

that despite the apparent operation of a publication bias in favour of neural networks, 

there is also evidence that in some clinical decision making problems (datasets), a 

particular neural network model offered better classification than a particular logistic 

regression model. Our earlier consideration of the bias-variance tradeoff, pre-empts a 

finding of this nature because it predicts that an MLP model may in some datasets offer 

a better bias-variance tradeoff than does an LR model.  

 

 

2.9  Conclusions 

Neural networks are a new type of computer system, inspired by the functioning of 

neurons in the brain and CNS. They are particularly suited for the development of 

applications that rely upon pattern recognition or pattern categorisation.  These are the 

kinds of problems that traditional techniques have been unable to satisfactorily address. 

Neural Networks have been successfully applied to range of applications, such as 

speech recognition and handwritten postcode digit recognition. There is a growing 

interest in applications using neural networks in clinical decision-making problems in 

medicine, with some systems such as PAPNET becoming widely used. 

 

Psychiatry contains many clinical decision making problems which have not been 

satisfactorily solved and which are good candidate applications for using neural 
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networks. The use of clinical judgement has been found to have significant limitations. 

Structured decision-making overcomes some of these, but we also know that it is not as 

effective as statistical decision-making. Adoption of the latter by clinicians has been 

very slow.  

 

The advent of neurocomputational decision-making provides a new alternative that has 

most of the features of statistical decision-making. Both statistical decision-making and 

neurocomputational decision-making are empirically based. The key difference is that 

neural networks are able to exploit non-linear relationships in data, which traditional 

linear statistical techniques do not. In terms of the classification schema outlined in 

Table 2.3 (Decision Making Practices by Clinicians), Neurocomputational should 

conceptually be considered to be a type of statistical decision-making.  

 

The bias-variance tradeoff, is a theoretical framework that can be broadly applied to 

classification and regression models, such as neural networks and logistic regression. 

This framework can be used to derive a set of conditions for neural network models to 

classify better than a logistic regression models, but it also suggests that in practice 

these conditions may be difficult to obtain. 

 

A review of studies comparing neural networks with the statistical technique of logistic 

regression for classification of medical datasets found that even though there seems to 

be a pervasive publication bias in favour of neural networks, there also seems to be 

some cases where the neural network classified better. 
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Therefore, neural networks have potential to better address certain classes of clinical 

decision making problems in psychiatry. However this has yet to be demonstrated 

empirically. Furthermore, due to a lack of experimentation with, and application of, 

neural networks to psychiatric clinical decision-making, little is known about issues of 

practical application of neural networks to psychiatric clinical decision-making. 

 

 


