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Chapter One 
 
The summation sign  
and the rules of summation                       
 
1. The summation Sign 
 
It is frequently necessary in statistical and psychometric calculations to 
take the sum of a number of values.   The symbol used to indicate this 
operation of adding up a group of numbers is a capital Greek Sigma - .∑  
 
However, the instruction ‘to take the sum of’ is rather vague without an 
indication of what it is that is to be summed.  It is necessary to have a 
system of notation to specify precisely which values are to be summed.   
Let us suppose that we have a set of four scores: 
 
    2, 4, 6, 8, 
 
and that we let X be a general symbol for any one of these scores.   The 
set of scores now consists of four X’s which are 2, 4, 6 and 8.   If we now 
assign a subscript to each of the X’s, we can assign an X which a given 
subscript to each score thus: 
 
  X1 = 2; X2 = 4; X3 = 6; X4 = 8. 
 
In the case of four scores the subscripts will naturally run from 1 to 4, but 
there are usually more than four scores involved, and so it is desirable to 
have a generalised notation, so that we can apply the system to any 
group of scores.  A general symbol for the number of scores is N.   Any 
collection of scores will consist of N scores.   If we want a general 
reference to a single score without specifying exactly which we can use 
the subscript i.   Thus X  is the ith score.   Consider the following set of 
scores: 
 
                       X1 = 6; X2 = 7 X3 = 8; X4 = 9; X5 =10. 
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What is the value of Xi when i = N?  The answer is 10.   There are five 
scores, therefore N = 5. Xi when i = N must be X5 , which is the symbol 
for the fifth score, which is 10.  In similar fashion the value of X1 where i 
= 2 is 7; where i = 1 it is 6 and so on. 
 
These symbols are often used in connection with the summation sign to 
indicate exactly which scores are to be summed. 
 
For example: 
 

  X1
i=1

N

∑ = take the sum of all scores from X1 toXN  

 
   
  i.e. X1 + X2 + X3 + ...XN  
 
The symbols above and below the summation sign are called the limits 
of the summation.   The value of i under the summation sign tells you 
where to start the addition, and the values above the summation sign 
tells you where to stop.   The starting and stopping places can be 
anywhere in the set of scores. 
 

  Xi
i=2

4

∑ = take the sum of scores 2 to 4 

 
  i.e. X2 + X3 + X4  
 
Often when there is no danger of confusion the symbol X∑  
Is used without subscripts or limits.   This should be read as though it 
was: 
 

            Xi
i=1

N

∑ = X =∑ Take the sum of all the numbers 

   
                     i.e. X1 + X2 + X3 + ...XN  
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X∑  will be used frequently in this book, but always check to see if there 
are any subscripts with it. 
 
Sometimes more than one summation sign is used.   Suppose that our 
scores are classified into groups, and let us use the symbol J for the 
number of groups, and nj  for the number of cases in the jth group.  A 
particular Xi  will now be found in the jth group, so we can put a double 
subscript under the X, to make it clear that we are talking about the ith 
score in the jth group, hence Xij.  Suppose now that we want to find the 
total score for one of the groups.   We will need to sum all of the Xij in 
that group and there will be njXij ‘s.    So the instruction to sum all the 
scores in a group can be written: 
 

  Xij
i=1

n j

∑ =  take the sum of all the scores in a group.  

 
If we now want to sum these totals of groups to find the grand total for 
all scores we can write: 
 

  Xij
i=1

n j

∑
j=1

J

∑ =  find the groups’ totals  

and add them all together. 
 
It will not be necessary in the following chapters to use more than 
double summation, but as many summation signs as necessary may be 
used. 
 
The use of brackets is also important.   If confronted with instructions 
inside a bracket always follow these instructions before following the 
instructions outside the brackets. 
 

  X1
2

i=1

N

∑ + X2
2 + X3

2 + ...XN
2
 

 
but 
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Xi
i=1

N

∑⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

2

= X1 + X2 + X3 + ...XN( )2

 

 

which is not the same as  Xi /
2

i=1

N

∑  

 
Similarly 
 

Xij
2

i=1

n j

∑
j=1

J

∑ =  Square every number in a group and find the 

                        total of the squared numbers, repeat for all 
                        groups and then sum the group totals.  

 
While 
 

  Xij
i=1

n j

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

=
j=1

J

∑   Find the total score for a group, square this  

                                              total, repeat for each group, then sum the  
                  squared group totals. 
 
So 
 

Xij
2 ≠ Xij

i=1

n j

∑
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

j=1

J

∑
i=1

n j

∑
j=1

J

∑
2
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Problems 
 
A. Given the following set of scores 
             X1 = 4;  X2 = 5;  X3 = 6;  X4 = 7; X5 = 8;  X6 = 9;  X7 = 10; 
             X8 = 11; X9 = 12; X10 = 13; X11 = 14; X12 = 15.  
 
(1) What is the value of N? 
(2) What is the value of Xi when I = 6? 
(3) What is the value of Xi when I = N? 
 
 
(4) What are the values of: 
 

(a) Xi
i=1

4

∑          (b)  Xi
i=10

N

∑             (c)   Xi
i= 5

8

∑  

 
 
B. In the following groups indicate which values will be the same as 
       another. 
 

(1) (a)  X 2

i=1

N

∑⎛ 
⎝ 
⎜ ⎞

⎠
⎟     (b)  X

i=1

N

∑⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

2

      (c)  X 2

i=1

N

∑  

 

(2) (a)  Xij
i=1

n j

∑
j=1

J

∑
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

    (b)   Xij
i=1

n j

∑
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

j=1

J

∑  

 

               (c)  Xij
2

i=1

n j

∑
j=1

J

∑         (d)   Xij
2

i=1

n j

∑
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

j=1

J

∑  

 
 
Answers 
A. (1) 12; (2) 9; (3) 15; (4) (a) 22;  (b) 42;  (c) 38. 
B. (1)  (a) and (c);  (2)  (c) and (d).  
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2. Some Rules of Summation 
 
On several occasions later in this book, proofs will be presented which 
require knowledge of some of the rules of summation.  In this section the 
rules will be stated and proofs of the rules provided.   The proofs are 
easy and well within the competence of any reader of this book.   The 
reader is therefore urged to read the proof as well as the rule. 
 
Summation Rule 1:    The sum of the sums of two or more Variables 

 is equal to the sum of their Summations. 
 

  i.e. Xi +Yi + Zi( )
i=1

N

∑ = Xi
i=1

N

∑ + Yi + Zi
i=1

N

∑
i=1

N

∑  

 
Proof 
 

(1)   Xi +Yi + Zi( )
i=1

N

∑ = X1 +Y1 + Z1( ) 

 
  + X2 +Y2 + Z 2( )+ X3 +Y3 + Z 3( ) 
 
  +… XN +YN + ZN( ) 
 
 
(2) Removing the brackets leaves 
 

X1 + Y1 + Z1 +X2 + Y2 + Z2 + X3 + Y3 + Z3 … + XN + YN + ZN 

 

(3) This equals all the X’s plus all of the Y’s plus all of the Z’s. 
 
(4) Which is the same as 
 

Xi + Y1 + Zi
i=1

N

∑
i=1

N

∑
i=1

N

∑  
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Summation Rule 2:  The sum of a constant times the values of a variable is 
 equal to the constant times the sum of the variable. 

 

             i.e.   cX1( )
i=1

N

∑ = c Xi
i=1

N

∑    where c is a constant. 

 
Proof  
 

(1)    cX1 = cX1 +cX2 +cX3 ...+cXN
i=1

N

∑  

 
(2) As everything is multiplied by c this can be written as: 

c(X1 + X2 + X3…XN) 
 

(3) The term inside the brackets is Xi
i=1

N

∑   therefore 

C(X1 + X2 + X3 …+ XN) + c Xi
i=1

N

∑  

 

(4) The brackets can be removed to give c Xi
i=1

N

∑  

 
 
Summation Rule 3:  The sum of a constant taken N times is 

 The constant times N. 
 

 i.e.  c = Nc
i=1

N

∑  

 
 
Proof 
 

(1)     c = c+ c+ c...c
i=1

N

∑  

 
(2) It can be seen that N constants are added together.  This is the 

 same as taking the constant N times which equals Nc. 
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Summation Rule 4:     The sum of the values of a variable plus A constant, is 
equal to the sum of the Values of the variable plus N 
times the constant. 

 

 i.e.  Xi + c( )= Xi + Nc
i=1

N

∑
i=1

N

∑  

 
Proof 
 

(1)      Xi + c( )
i=1

N

∑ = Xi + c
i=1

N

∑
i=1

N

∑    (by Summation Rule 1). 

 

(2)      c = Nc
i=1

N

∑     (by Summation Rule 3). 

 

(3) So we obtain  Xi + Nc
i=1

N

∑  

 
 
 
 
Summation Rule 5:    The sum of the values of a variable minus a 
    Constant is equal to the sum of the values 
    Of the variable minus N times the constant.  
 

 i.e.    Xi − c( )
i=1

N

∑ = Xi − Nc
i=1

N

∑  

 
Proof 
 
This can be left as an exercise. 
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Problems 
 
A. Simplify the following expression: 
 

            Xi +Yi − c − d( )
i=1

N

∑    where c and d are constants. 

 
B. Check your answer using the following data: 
 
Subject     X Score       Y Score 
   (1)  1       5 
   (2)  2       6 
   (3)  3       7 
   (4)  4       8 
            c = 2     d = 3 
 
C. In the above example what is the value of  
 

(a) d
i=1

N

∑      (b)   cXi
i=1

N

∑      (c)   Xi +Yi( )?
i=1

N

∑  

 
D. Are the answers you gave to question C consistent with the rules 
of summation given above? 
 
Answers 
 

A.    Xi + Yi − N(c + d)
i=1

N

∑
i=1

N

∑  

 
B.    Xi +Yi − c − d( ) for subject (1) is 1;  for (2) is 3;  for (3)is 5 and for (4) 

is 7.   The sum of these is 16. 
 

        Xi =10; Yi = 26;N = 4;c+ d = 5
i=1

N

∑
i=1

N

∑  

 
       Inserting these values in A gives 16 which is the same as for: 

Xi +Yi − c − d( )
i=1

N

∑  

 
C.    (a) 12.    (b)  20.    (c)   36. 



 
Chapter Two 

 

The mean, the variance,  
and the standard deviation 
 
 
1.   The Mean and other Measures of Central Tendency 
 
The arithmetic mean is the average of a set of numbers.   It can be 
symbolised as M and its formula is: 
 
   

  Arithmetic Mean = M =
X

i=1

N

∑

N
=

X∑
N

2 :1( ) 

 
 
It is the most important of three measures of central tendency.   
The other two are the median and the mode.   The mode is defined 
simply as the value which occurs most frequently.   The median is 
the value below which exactly fifty percent of cases fall, and above 
which are exactly fifty percent of cases.  It is the point which splits 
the set of scores into two equal parts. 
 
 
 
Problems 
 
Find the mean, mode and median of the following sets of scores.  
 

A.  1,  2,  2,  3,  4,  5,  6. 
 

B.  10,  11,  12,  14,  15,  15.  
 

C.    7,   7,   8,   8,   10,  10. 
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Answers 
 
A.  Mean 3.3;    mode 2; median 3.  
 
 
B.  Mean 12.8;    mode 15;   median 13  

(by convention half way between the two mid-most scores 
when there is an even number of scores).  

 
C.     Mean 8.3;    mode 8;   median 8. 
 
 
From this point onwards subscripts will be used only when 
necessary. 
   
Returning now to the formula for the mean it can be shown that: 
 
 
    X = NM∑     (2:2) 
 

Proof 
 

(1) NM = N X∑
N

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . 

 

(2) =
N X∑

N
. 

 
(3) The N’s cancel one another out leaving X∑ . 
 
 
This general principle that the sum of a set of values equals N 
times the mean of that set will be useful at several later points.  

 
It is also true that: 

 
   X − M( )= 0∑     (2:3) 
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Proof 
 
(1) X − M( )∑ = X − M∑∑   by Summation Rule 1. 
 
(2) Further by Summation Rule 3, as the mean is a constant: 

 
M = NM ,∑   so (1) becomes X − NM .∑  

 
(3) But we have just shown in equation (2:2) that NM = X∑  

 so we obtain X − X = 0∑∑ . 
 
The value Xi − M x , the deviation of a score from the mean, is 
called a deviation score and is sometimes symbolised as xi . 
Similarly Yi − M y is symbolised as yi .  As demonstrated in (2:3) 
 
   x = 0; y = 0∑∑  
 
 
 
2.  The Variance 
 
The variance is a measure of dispersion.  It tells us something 
about the scatter of scores around the mean.  It is defined as the 
mean squared deviation from the mean, and symbolised by a 
small sigma squared - σ 2 .   Its formula is: 
 

   Variance = σ x
2 =

X − M( )∑
N

2

   (2:4) 

 
or using x for X – M 
 

     σ x
2 =

x 2∑
N

    (2:5) 

 
 It follows from this formula that: 
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   x 2∑ = X − M( )∑
2

= Nσ x
2    (2:6) 

(2:6) is obtained from (2:5) by multiplying both sides of the 
equation by N. 
 
Another variant of the formula for the variance is: 
 

   σ x
2 =

x 2∑
N

− M 2     (2:7) 

 
Proof 
 
(1)   σ x

2 = X − M( )∑
2 / N. 

 
(2)       = X 2 + M 2 − 2XM( )∑ / N. 
 
(3) Using Summation Rules 1 and 3 this becomes: 
 

X 2∑ + NM 2 − 2 XM∑( )/ N  
 
 

(4) but we have shown in (2:2) that X = NM∑  so we can write: 
 

σ x
2 = X 2 + NM 2 − 2NMM∑( )/ N  

 
 
(5) but 2NMM = 2NM 2  so (4) becomes: 
 

σ x
2 = X 2∑ − NM 2( )/ N  

 
 
(6) Dividing by N this gives: 
 

σ x
2 =

X 2∑
N

− M 2 

 
 



Philip Ley. Quantitative Aspects of Psychological Assessment                           14 

© 1972, 2007 Philip Ley Text re-typed for computer by Irene Page 
 

The numerator (top part) of equation (2:4) for the variance is the 
sum of squared deviations from the mean.   This sum is usually 
called the sum of squares. 
 
  Sum of squares = SS = X − M( )∑

2
 (2:8) 

 
 
An alternative formula for this value is: 
 
 

   SS = X 2∑ −
X 2∑( )

N
   (2:9) 

 
Proof 
 
(1) In the proof of (2:7) at (5) it has been shown that 
 
   X − M( )∑

2
= X 2∑ − NM 2 

 
 

(2) But NM 2 = N X∑
N

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

X∑
N

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 
 

(3) Multiplying this becomes:  
N X X∑∑

N 2
 

 
(4) Dividing numerator and denominator by N gives: 
 

   
X 2∑( )

N
 

 
(5) Substituting this in (1) we obtain: 
 

   X − M( )∑
2

= X 2∑ −
X 2∑( )

N
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1. The Standard Deviation 
 
The standard deviation is the square root of the variance and is 
symbolised by a small Greek sigma - σ .   Its formula is the square 
root of any of the formulae for the variance, e.g. 
 
 

   σ x =
x 2∑

N
    (2:10) 

 
 
The mean, the variance and the standard deviation are important 
in psychometrics because of their relationships to the normal 
curve.  These relationships will be discussed in the next chapter.  
 
 
Problems 
 
Given the following set of scores:  
 
  1,  2, 3, 4, 5, 6, 7. 
 
Find: 
 
A. The mean. 
B. The variance. 
C. The standard deviation. 
D. X − M( )∑ . 
 
 
 
Answers 
 
A. 4;    B. 4;  C. 2;   D. 0. 

 
 

 



Chapter Three 
 

The standard normal distribution 
 
 
1. Distributions in General 
 
If we plot frequency distributions of data, the distributions 
obtained can vary in a number of ways.  Three of these ways are: 
 

(1)  modality;  
(2)  skew;  
(3)  kurtosis. 

 
Modality refers to the number of peaks in a distribution.   Three 
distributions varying in modality are shown in Figure 3.1, 
unimodal,  bimodal and trimodal.   The trimodal distribution has 
been labelled ‘polymodal’, a general term for distributions with 
more than one mode.   
 
 

 
 
 
Unimodal distributions can differ from one another in terms of 
skew.   A skewed distribution is asymmetrical and has a tapering 
tail at one end.   The tapering part is the skewed part and if it is in 
the direction of low scores the distribution is negatively skewed, 
while if it is in the direction of high scores the distribution is 
positively skewed.  Skewed distributions are shown in Figure 3.2. 
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Symmetrical Negatively skewed Positively skewed 

 
Figure 3.2  Symmetrical and skewed distributions
 
Distributions also differ in kurtosis or degree of peakedness, tall 
narrow distributions being lepto-kurtic and short broad ones 
platy-kurtic.  Figure 3.3 shows distributions differing in kurtosis. 
 

 
   
 
Problems 
Given the following distributions of percentages of subjects 
obtaining the indicated scores: 
 
Scores I  II  III  IV  V 
70-79  30  10   5   5 
60-69  40  30  10  10 
50-59  20  10  15  15   5  
40-49   5  10  20  20  20 
30-39   5  30  25  20  50 
20-29     5  15  15  20 
10-19     5  10  10   5 
 0- 9          5 
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A. Which of the symmetrical distributions is the more 

platy-kurtic?  
 

Which of all the distributions is, or are: 
 
B. negatively skewed; 
C. bimodal; 
D.     positively skewed; 
E.     unimodal. 
 
Answers 
 
A. IV; 
B. I; 
C. II; 
D. III;  
E. I, III, IV, V. 
 
 
2. Normal Distributions            
 
A normal or Gaussian distribution is a distribution described by 
the equation: 

  Y =
1

σ 2π
e− X−M( )2 /2σ 2

    (3:1) 

where: 
 Y = Proportion of cases at a given point. 

 π= 3.1416 
     e = 2.718 
 σ = Standard deviation 
 M = Mean. 

    
The equation may be a little off-putting at first glance but close 
inspection reveals that the mean and standard deviation are 
important parts of the formula.  In fact the formula for any normal 
distribution is the same except-t for these two values.  
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Figure 3.4 shows some normal distributions which differ in these 
characteristics. 
 

 
Different means Different standard deviations 

 

Figure 3.4  Normal distributions differing in standard deviation or mean 
 

 
All normal distributions have the same general shape but they can 
differ tremendously in degree of kurtosis, yet amongst the things 
that all normal distributions have in common is the fact that the 
mean, the median and the mode fall in the same place.  In a 
normal distribution the mean = the median = the mode.  Further in 
all normal distributions the range M + 3σ includes nearly all cases.  
 
Given the mean and standard deviation of a normal distribution 
the probability of occurrence can be worked out for any value.  It 
is therefore possible to prepare tables, which give these 
probabilities, but these would differ from one distribution to 
another because of differences in the numerical value of the means 
and standard deviations. 
 
To circumvent this problem it is necessary to find a common unit 
of measurement into which any score could be converted so that 
one table will do for all normal distributions.  This common unit is 
found in the standard score or Z score. 
 
 
 
 
 
 
3. Standard Scores or Z scores 
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Z scores are scores converted into the number of standard 
deviations that the scores are from the mean of their distribution. 
 

   Z = X −M
σ

= x
σ

    (3:2) 

 
It can be seen from (3:2) that, to find a Z score, the difference 
between a score and the mean is divided by the standard deviation 
of the scores.  
 
A Z score of +2.0 therefore means that the original score was 2 
standard deviations above the mean.   
 
A Z of –3.5 means that the original score was three and a half 
standard deviations below the mean.  
 
 
 
Problem 
 
Convert the following set of scores into Z scores: 
 
   1, 2, 3, 4, 5, 6, 7. 
 
Answer 
 

Step 1.  M =
X∑

N
= 28

7
= 4 

 

Step 2.   σ =
−32( )+ −22( )+ −12( )+12 + 22 + 32

7
= 2  

 

Step 3.   Z =
X −M
σ

=
1− 4

2
; 2− 4

2
etc. 

 
= −1.5; −1.0;−0.5; 0;+0.5;+1.0;+1.5  
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The mean of a set of Z scores is zero.   As we will need to use 
means of several statistics in later sections we will symbolise 
means by putting a bar over the symbol representing the statistic.    
 
Thus  
 

 Zx = mean Z score for the X’s, 
  
  X  = Mx, σ  = mean standard deviation and so on. 
 

      Z = 0        (3:3) 
 
 
Proof 
 

(1) Z =
Z∑

N
. 

(2)      

  
Z∑

N
=

X −M( )∑
σ

/ N  

 
(3)  But it has been shown that 

 
X −M( )∑ = 0   (See 2:3 for details) 

 

          So   
Z∑

N
= 0
σ

/ N = 0 

 
The variance of a set of Z scores is 1.0, and as the square root of 1.0 
is itself 1.0, the standard deviation of a set of Z cores is also 1.0. 
 
 
  σ Z

2 =σ Z =1.0       (3:4) 
    
 
 
 
Proof 
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(1)  σ Z
2 =

Z − Z( )∑
N

2

     (This is just the usual formula for the  

    variance with Z’s instead of X’s.) 
 
 
(2)  As Z = 0, (from 3:3) 

 

σ Z
2 =

Z 2∑
N

 

    

(3)  But Z = X −M
σ

so Z 2∑ =
X −M( )∑
σ 2

2

 

 
 

(4)  However if 
X −M( )2

∑
N

=σ 2 then X −M( )2
= Nσ 2∑  

 
 

(5)  Using the information from (3) and (4) we obtain: 
 

Z 2∑ =
X −M( )2

∑
σ 2

= Nσ 2

σ 2
= N  

 
 

(6) So   σ Z
2 =

X 2∑
N

and Z 2∑ = N.  Therefore  

 

σ Z
2 =

Z 2∑
N

= N
N
=1.0  

 
 
We now have a distribution with a mean of zero and a standard 
deviation of 1.0, and we can easily convert any score into a Z  score 
by use of formula (3:2). 
 
4.    The Standard Normal Distribution 
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The standard normal distribution is the normal distribution with a 
mean zero and a standard deviation of one, and a total area under 
its curve of 1.0.  The meaning of the area under the curve will 
become clear in the examples.   It is simply the proportion of cases.  
Tables are available for the normal distribution, and can be found 
in almost any elementary statistics text.  Unfortunately the data 
selected for inclusion may differ from text to text.  Tables in the 
text books give one or more of the following values: 
 
 
(a) The proportion of cases falling in the area between the mean 

and a given Z score,  and/or 
 
(b) The proportion of cases falling beyond a given Z score. 
         This is called the proportion in the smaller area, and/or 
 
(c) The proportion in the larger area cut-off by a given Z score. 
 
 
 
Detailed instructions and examples are given below for the use of 
each of these types of tables.   Tables 3:1, 3:2 and 3:3 give selected 
values from each of the different types.   In all of these tables the 
left hand column is a Z score.  Before each table there is a diagram 
indicating the areas involved.  
 
An example of the first sort of table is given below in Table 3:1.   
This table gives the area between the mean and a given Z score.   
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Figure 3.5 shows the area of the curve lying between the mean and 
a Z of –1.0.  

 
 
Figure 3.5 Proportion of cases lying between the mean and z score 

(shaded area) 
    
 
TABLE 3.1  PROPORTION OF CASES LYING BETWEEN  

THE MEAN AND A GIVEN STANDARD SCORE 
 
                                          Proportion of area of  
 x/σ = Z  Curve between M and Z                        
   0.00    .0000 
   0.10    .0398 

0.20     .0793 
         0.50    .1915 

   1.00    .3413 
   2.00    .4772 
   3.00    .49865 
 
 

A number of problems can be solved using this table. 
 
(i)      To find the proportion of cases scoring above a given point.  
 

(a) If Z is positive, the proportion scoring above a given 
point is given by .5000 minus the proportion lying 
between the mean and the value of Z. 
 
Example   If Z is +1.00, the proportion of cases lying 
between Z and the mean is .3413, therefore the 
proportion above this point is .5000 minus .3413 = 
.1587. 
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(b) If Z is negative, the proportion scoring above a point is  
given by .5000 plus the proportion lying between the 
mean and the   Z value. 
 

Example   If Z is –1.00 the proportion of cases lying between     this 
value and the mean, will be the same as that lying between the 
mean and a Z scores of + 1.00, because the normal curve is 
perfectly symmetrical.  Thus the required proportion will be .3413 
+ .5000 - .8413. 
  
(ii)     To find the proportion of cases falling below a certain point. 
 

(a) If Z is positive the proportions of cases falling below a 
given point will be equal to .5000 plus the proportion of 
cases between the mean and that Z score. 
 

                   Example   The proportion of cases falling below a Z  
  score of -2.00 is equal to .5000 + .4772 = .9772. 
 

(b) If Z is negative the proportion of cases falling below a 
point will equal .5000 minus the area between the mean 
and that Z score. 

   
Example  The proportion of cases falling below a Z score 

  Of – 2.00 equals .5000 - .4772 = .0228. 
 
 
(iii) To find the proportion of cases falling between two given 
 points. 
 

(a) If both Z scores have the same sign, i.e. if both are 
positive or both are negative, the proportion falling 
between the two points will be the proportion lying 
between the mean and the higher Z minus the 
proportion lying between the mean and the lower Z. 

 
Example What proportion of cases lie between a Z score 
of  +1.00 and a Z score of + 2.00?  The proportion 
between the mean and +2.00 = .4772, while the 
proportion between the mean and + 1.00 = .3413, thus 
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the proportion lying between the two is .4772 - .3413 = 
.1359. 

 
 
(b) If the Z scores have unlike sign, i.e. one is positive and 

the other is negative, then the proportion lying between 
them is the sum of the proportions lying between the 
mean and each Z score. 

 
Example  What proportion of cases lie in the range 
between +1.00 and -.50?  The proportion between the 
mean and + 1.00 = .3413, while that between the mean 
and - .50 equals .1915.  Therefore the proportion of cases 
falling in the range between +1.00 and -.50 = .3413 + 
.1915 = .5328. 

 
 

The second type of table described above gives the proportion of 
cases lying further away from the mean than a given Z score.  
Some values from such a table are given in Table 3:2.  Again a 
visual aid is provided in Figure 3.6 which shows the proportion of 
cases falling in the area beyond a Z of +1.0. 
 

 

 
 

Figure 3.6  Proportion of cases in the smaller portion 
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TABLE 3:2  PROPORTIONS IN THE SMALLER PORTION OF  
     THE CURVE FOR DIFFERENT VALUES OF Z 
 
       Proportion falling in area 
             further away from the mean 
          x/σ = Z   than the specified Z score 
   0.00     .5000 
   0.10     .4602 
   0.20     .4207 
   0.50     .3085 
   1.00     .1587 
   2.00     .0228 
   3.00     .00135 
 
Just as in Table 3:1 the Z score values start at .00, which is the 
mean, but values in the body of this table can be seen to be .5000 
minus the corresponding value in Table 3:1. 
 
The rules for using this Table 3:2 are therefore different. 
 
(i)  To find the proportion of cases scoring above a given point. 
 

(a) If Z is positive the value in the table opposite that Z will  
be  the proportion scoring above that point.   
 
Example   If Z is + 1.00 what proportion of cases will 
score above that value?  Opposite a Z of 1.00 is the 
proportion .1587, which is the proportion of cases 
scoring above that value.   

 
(b) If Z is negative the proportion of cases scoring above the 

value will be 1.0000 minus the proportion opposite Z in 
the table. 
  
Example   If Z is –1.00 what proportion of cases will 
obtain a higher score?   The proportion of cases opposite 
1.00 in the table is .1587 therefore the proportion scoring 
above Z score of 1.00 will be 1.0000 - .1587 = .8413.  
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(ii)  To find the proportion of cases scoring below a given point. 
 

 (a) If Z is positive the proportion will be 1.00 minus the 
proportion opposite the value of Z in the table. 

 
 Example   The proportion of cases falling below a Z of  
 +2.00 is equal to 1.00 - .0228 = .9772. 
 
(b) If Z is negative the proportion will be equal to the value 

in the table.  
 
 Example  The proportion of cases falling below a Z score 

of –2.00 equals .0228. 
 
(iii)  To find the proportion of cases falling between two specified 
         points.  
 

 (a) If both Z’s have the same sign, the proportion lying 
between them will be the difference between the 
proportions in the table corresponding to the Z’s. 

 
 Example  What proportion of cases lies in the range 

between a Z score of + 1.00 and a Z score of +2.00?  
Reference to Table 3:2 shows that a proportion of .1587 
obtains higher scores than a Z of 1 and .9228 obtains 
higher scores than a Z of 2.  By the rule the proportion 
lying in the range  

 
               Z1 − Z 2  = .1587 - .0228 = .1359. 
 
(b) If the Z’s have unlike sign, the proportion lying between 

them will equal .5000, Z1 plus .5000 minus the 
proportion corresponding to Z2. 

 
 Example  What proportion of cases lies in the range 

between a Z of + 1.00 and a Z of –0.50?  The proportion 
corresponding to a Z of +1.0 is .1587 and the proportion 
corresponding to a Z of –0.50 is .3085. 
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 Subtracting each of these from .5000 gives .3413 and       
.1915.  Adding these gives .5328. 

 
The third sort of table gives the proportion of cases lying in the 
larger area.  An example of this type of table is given in Table 3:3.   
Figure 3.7 shows the proportion of cases in the larger area when Z 
is +1.0. 

 

 
 
Figure 3.7  Proportion of cases in larger area when Z = +1.0 
 

 
TABLE 3.3   AREAS IN THE LARGER PORTION OF THE 
 NORMAL CURVE FOR DIFFERENT VALUES OF Z 
 
  Area in the 
                          x /σ = Z     larger portion  
     0.00      .5000 
     0.10      .5393 
     0.20      .5793 
     0.50      .6915 
     1.00      .8413 
     2.00      .9772 
     3.00      .99865 
 
Problems 
 
1. Write the rule for finding the number of cases falling above a 

given point. 
 
2. Write the rule for finding the number of cases falling below a 

given point. 
 
3. Write the rule for finding the number of cases falling between 

two points. 
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Answers 
 
1. To find the proportion of cases falling above a given point: 
 

(a)  If Z is positive subtract the value in the table 
corresponding to Z from 1. 

 
Example   If Z is +1.00 what proportion of cases will score 
above that value?  The proportion corresponding to a Z 
of +1.00 is .8413, this proportion subtracted from 1.000 
leaves .1587. 

    
 

(b) If Z is negative the proportion opposite Z in the table 
 gives the proportion of cases above that point. 
 

Example  If Z is –1.00 what proportion of cases will 
 score above that point?  The answer directly from the 
 table is .8413. 

 
 
 
2. To find the proportion of cases falling below a point: 
  
 (a) If Z is positive this can be read directly from the able. 
  Example   The proportion of cases falling below a Z of 
  +2.00 is .9772. 
 

(b) If Z is negative the proportion falling below that point
 will be 1.0000  minus the proportion in the table  

  corresponding to Z. 
 
  Example  What proportion of cases fall below a Z of 

-2.00?  The answer will be 1.0000 - .9772 which equals 
.0228. 
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3. To find the proportion of cases falling between two given  
 points: 
 
 (a) If the Z’s have the same sign the answer is obtained by 
  finding the difference between the proportions 
  corresponding to the two Z’s. 
 
  Example  The proportion of cases lying in the range 
  between a Z of +1.00 and a Z of +2.00 will equal 
  .9772 - .8413 = .1359. 
 
 
 (b) If the Z’s have unlike sign, the proportion will be the 
  proportion corresponding to Z1 minus .5000 plus the 
  proportion corresponding to Z2 minus .5000. 
 
  Example  The proportion of cases falling between a Z 
  of +1.00 and a Z of -.50 will be .8413 - .5000 plus 
  .6915 - .5000 = .5328. 
 
 
 
It is hoped that during the solving of these problems the  
reader has gained insight into the methods for using the three  
types of table.  If not the rules provided can be followed 
mechanically until insight dawns.  There will be plenty of  
further opportunities to use the tables, especially in the next 
chapter. 
 
 



 

 

Chapter Four 
 

Test Scales and norms 
 
1. Types of Test Score in Common Use 
 
The most frequent methods of reporting test results appear to  
be: 
 

Percentiles 
T Scores 
I.Q’s 
Sten Scores 

 
This chapter will describe the nature of each of these types of scale, 
and give the method of converting scores of one type into scores of 
another.  At the present time it is possible to have data for an 
individual on a number of tests each of which gives its results 
differently.  It is therefore necessary to be able to compare one type 
of scale with another. 
 
 
2.   Percentiles 
 
Percentiles may be taken as points on a measuring scale below 
which a stated percentage of cases fall.  Thus below the 75th 
percentile will fall 75 percent of cases, below the 10th percentile 10 
percent, and so on.  The 50th percentile is the median, and in the 
case of a normal distribution it is the mean and mode as well.  In 
constructing percentile norms the first step is to tabulate the 
frequency distribution of the scores.  When this has been done a 
cumulative frequency distribution is worked out.  This gives the 
cumulative total of cases at each score level working usually from 
the lowest score upwards.  Once this has been obtained the 
percentiles corresponding to the scores are worked out by the 
formula: 
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  Percentile = cfB = .5 f
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ×100    (4:1) 

 
where: 
   cfB =  cumulutive frequency of the score below the one for  
  which the percentile is being calculated; 
 
      f = frequency of the score whose percentile is being  
  calculated; 
 
     N =  total number of cases. 
 
 
   The complete procedure is illustrated below in Table 4:1. 
 
 
TABLE 4:1 OBTAINING PERCENTILE NORMS  
  FROM FREQUENCY DISTRIBUTIONS 
 
   Frequency    Cumulative   Percentile 
             of     Frequency of                   (cfB + .5f)/N 
Score   Score(f)    Score (cf)        cfB + .5f  × 100 
   50        2        20                 19               95 
   49        3        18                 16.5              82.5 
   48        4        15        13      65 
   47        5        11         8.5     42.5 
   46           3          6         4.5     22.5 
   45        2          3         2               10 
   44        1          1        .5                 2.5 
 
It should be emphasized, if it is not immediately apparent, that 
percentile norms would never be worked out on such a small 
number of cases.  The process can also be worked in the opposite 
direction.  If we want to find the score corresponding to a given 
percentile we use the formula: 
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Score corresponding to a percentile  
 

  = XLL +W Np − cfB
f

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟     (4:2) 

where: 
 
XLL = the lower limit of the class interval, in this case the 
   scores are in units, so XLL = X -.5. 
   e.g.  XLL for X50 = 49.5, for X37 = 36.5 etc. 
 
W =  Width of class interval in units. 
  e.g  suppose scores were classed 90-94, 95-99, 
  100-104.  W would be 5.  In Table 4:1 W = 1. 
 
Np =   Number of cases times the proportion indicated by the 

percentile.  Referring this value to the cumulative frequency 
column enables us to find the interval in which the value 
corresponding to the percentile will lie. 

 
     cf B and f are as above in formula 4:1. 
 
As an example suppose with the data in Table 4:1 we wanted to 
find the 75th percentile, we would take the following steps: 
 
Step 1. The value of Np will be 20 x .75 = 15.  So we need the 
   interval containing the 15th case. 
 
Step 2. This corresponds to a score of 48, and in this interval 
   are 4 cases, so f = 4. 
 
Step 3.   cfB = 11. 
 
Step 4.  The lower limit of the interval containing the 75th   
   percentile is 47.5. 
 
Step 5. Putting these together we get: 

47.5 + 1 15 −11
4

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = 48.5 = XLL +W Np − cfB

f
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  



Philip Ley. Quantitative Aspects of Psychological Assessment 

               
© 1972, 2007 Philip Ley Text re-typed for computer by Irene Page 

35 

3. T Scores 
 
T scores are normally distributed scores with a mean of 50 and a 
standard deviation of 10.  If the distribution of obtained scores is 
normal then T scores can be worked out directly by: 
 

(a) converting each score to a Z score; 
 

 (b) multiplying the Z by 10;    then 
  
           (c)  adding or subtracting (depending on the sign of the Z) 
  to or from 50.   This will be the T score. 
 

   T =10 X − M
σ x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + 50    (4:3) 

 
 
If the scores are not normally distributed the T scores will have to 
be calculated from percentiles.  This procedure incidentally has the 
effect of normalizing the distribution of scores.  Table 4:2 contains 
the raw scores and percentiles from Table 4:1.  Two columns have 
been added.  One of these gives the Z values corresponding to 
percentiles.  These were obtained from tables for the normal curve, 
and the other gives T score values. 
 
TABLE 4:2  CALUCLATION OF T SCORES FROM RAW SCORES 
 
          T Score 
  Score  Percentile  Z Score        (50 + 10Z) 
     50      95     +1.64      66 
     49          82.5    +0.93      59 
        48      65     +0.39      54 
           47      42.5     -0.19      48 
           46      22.5     -0.76      42 
            45      10      -1.28      37 
        44        2.5     -1.96      30 
   
It will be seen that differences of one unit in the original scores are 
represented on the T scale as varying between 5 and 7. 



Philip Ley. Quantitative Aspects of Psychological Assessment 

               
© 1972, 2007 Philip Ley Text re-typed for computer by Irene Page 

36 

Problems 
 
A.   (a) What T score will correspond to the 5th percentile, 
 (b) the 16th percentile, 
 (c) the 99th percentile, 
 (d) the 50th percentile? 
 
B.  What is the score corresponding to the median in Table 4:1? 
 
 
Answers 
 
A.  (a) 34, (b) 40, (c) 73, (d) 50. 
B.   47.3. 
 
 
 
4. IQ’s 
 
IQ’s are intelligence quotients and are used in reporting 
intelligence test scores.  Nowadays nearly all I.Q’s are deviation 
I.Q’s.  Raw scores are converted to a scale with a given mean and 
standard deviation.  In the case of Wechsler Scales the mean is 100 
and the standard deviation is 15.  If raw scores are normally 
distributed one can convert them into I.Q’s with a mean of 100 and 
standard deviation of 15 by: 
 
 (1)   Converting to Z scores. 
 (2)   Multiplying the Z by 15. 
 (3)   Adding or subtracting the result from 100. 
 
A formula which does this is: 
 

 I.Q. M ,100;σ ,15( )=
X − M( )

σ
+100    (4:4) 

 
To convert I.Q’s into percentiles it is necessary to convert them to 
Z scores and then find the percentile by reference to tables for the 
normal curve. 
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Problems 
 
A.  Given raw scores with a mean of 80 and a standard deviation 

of 20, convert the following into I.Q’s on a scale with a mean 
of 100 and a standard deviation of 15.  

 
(a) 20;  (b) 90; (c) 100; (d) 67. 

 
 
A. Now convert each one to an I.Q. on a scale with a mean of 

100 and a standard deviation of 24. 
 
B. Convert the following I.Q’s to percentiles.  The test has a 

mean of 100 and a standard deviation of 15. 
 

 (a) 100; (b) 90; (c) 130; (d) 115; 
 (e) 110; (f)  70; (g)  85. 
 
 
 
Answers 
 
A. (a) 55; (b) 107.5  (c) 115;  (d)  90. 
 
B. (a) 28; (b) 112     (c) 124;  (d)  84. 
 
C. (a) 50th; (b) 25th; (c) 98th; (d) 84th; (e) 75th; (f) 2nd;  

(g) 16th.  
 
 
 
5.   Sten Scores 
 
The main tests on which sten scores are used are the personality 
questionnaires prepared by R. B. Cattell and his associates.  Cattell 
defines stens as: 
 
‘Units in a standard ten scale, in which ten score points are used to 
cover the population range in fixed and equal standard deviation 
intervals, extending from 21/2 standard deviations above the mean 



Philip Ley. Quantitative Aspects of Psychological Assessment 

               
© 1972, 2007 Philip Ley Text re-typed for computer by Irene Page 

38 

(sten 10).  The mean is fixed at 5.5 stens.’  (Cattell, 1965, The 
Scientific Study of Personality, London: Pelican, p.374. 
 
The units on the sten scale are thus half a standard deviation in 
width, which is fairly coarse grouping compared with T scores, 
(one tenth of a standard deviation), and Wechsler I.Q’s, one 
fifteenth of a standard deviation.  Each sten covers a range of 
percentiles as shown in Table 4:3 which also shows the range of T 
Scores and Wechsler type I.Q’s corresponding to stens.  This last 
information is included because Factor B of the 16 Personality 
Factor Questionnaire is a measure of intelligence. 
 
 
TABLE 4:3  THE RELATIONSHIP BETWEEN STEN SCORES 
                      AND OTHER SCORES 
 

   Percentiles T Scores I.Q’s 
 Upper limit 

of sten 
at upper limits of range covered 

by the Sten 
10     
9 9.5 97.72 70 130 
8 8.5 93.32 65 122.5 
7 7.5 84.13 60 115 
6 6.5 69.15 55 107.5 
5 5.5 50 50 100 
4 4.5 30.85 45 92.5 
3 3.5 15.85 40 85 
2 2.5 6.68 35 77.5 
1 1.5 2.28 30 70 

 
(No upper limit is given for Sten 10, and no lower limit for Sten 1, 
as these would not be sensible.) 
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Problems 
 
An individual obtains the following test results on a series of 
intelligence tests. 
 
(a) Test A (M 100, σ 15)  145 
(b) Test B     84th percentile 
(c)  Test C T Score   61 
(d) Test D (M 100, σ 24)  148 
(e) Test E Sten Score     9 
 
 
Convert these scores into: 
 
A. Sten Scores 
B. Percentiles. 
C. I.Q’s (M 100, σ 15). 
D. T Scores. 
E. Scores on a test with (M 500, σ 50). 
 
 
Answers 
 
A.  (a) 10; (b) 7; (c) 8; (d) 10. 
B.   (a) 99.9; (c) 86.4; (d) 98; (e) 93-98 percentile. 
C.   (b) 115; (c) 117; (d) 130; (e) 122-130. 
D.   (a) 80; (b) 60; (d) 70; (e) 65-70. 
E.   (a) 650; (b) 550; (c) 555; (d) 600; (e) 575-600. 
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6. A Table showing the Relationships between Percentiles, Z Scores, 
Wechsler I.Q’s and T Scores 
 
TABLE 4:4   THE RELATIONSHIPS BETWEEN PERCENTILES, 

           Z SCORES, WECHSLER I.Q’S AND T SCORES 
 
 Percentile  Z Score  I.Q.  T Score 
 
       1st  - 2.33    65     27 
       5th  - 1.64    75     34 
      10th  - 1.28    81     37 
      15th  - 1.04    84     40 
      20th  - 0.84    87     42 
      25th  - 0.67    90     43 
      30th  - 0.52    92     45 
      35th  - 0.39    94     46 
      40th  - 0.25    96     48 
      45th  - 0.13    98     49 
      50th     0.00   100     50 
      55th  + 0.13  102     51 
      60th  + 0.25  104     52 
      65th  + 0.39  106     54 
      70th  + 0.52  108     55 
      75th  + 0.67  110     57 
      80th  + 0.84  113     58 
      85th  + 1.04  116     60 
      90th  + 1.28  119     63 
      95th  + 1.64  125     66 
      99th  + 2.33  135     73 
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7. A general Formula for converting Scores on a Scale with given 
Mean and Standard Deviation into Scores on a Scale with different Mean 
and Standard Deviation 
 
In the previous sections of this chapter the conversion of scores 
from one scale to another has usually been through the use of Z 
scores.  This has been done to emphasize the logic of the 
procedure.  The steps have been: 
 
 
(1) find the Z score on Scale 1 
 

  X1 − M1

σ 1

= Z
⎛ 

⎝ 
⎜ 

⎞

⎠
⎟ 

 
 and 
 
 
(2) convert the Z score to a score on Scale 2 by (a) multiplying the 
Z score by the standard deviation of  
Scale 2 and (b) adding the mean 
 
 
   X2 = Zσ 2 + M 2( ) 
 
But as the Z score on both Scales will be the same by definition: 
 
 

  X2 = σ 2

σ 1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ X1 − σ 2

σ 1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ M1 − M 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥    (4:5) 

 
 
Proof 
 

(1) X2 − M 2

σ 2

= X1 − M1

σ 1

,  by definition. 

 
(2) Multiplying both sides by σ 2 gives: 
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 X2 − M 2 = σ 2

σ 1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ X1 − M1( )= σ 2

σ 1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ X1 − σ 2

σ 1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ M1 

 
(3) Adding M2 to both sides gives 
 

 X2 = σ 2

σ 1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ X1 − σ 2

σ 1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ M1 + M 2 

 
(4) Thus: 
 

 X2 + σ 2

σ 1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ X1 − σ 2

σ 1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ M1 − M 2

⎡ 

⎣ 
⎢ 

⎤

⎦
⎥ 

 
For many purposes this formula is easier to use than the procedure 
using Z scores.  As an example of its use suppose that it is desired 
to convert a WAIS I.Q. of 90 into a T Score.  Substituting the 
appropriate value in the formula gives: 
 

 T Score  = 10
15

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 90 − 10

15
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 100 − 50

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = 43. 

 
In any situation where there are a large number of scores to 
convert from one scale to another, the fact that: 
 

  σ 2

σ 1

M1 − M 2( ) 

 
will be a constant will ease the computational burden.  If only one 
score is to be converted, the following variant of (4:5) should be 
used 
 

  X2 = σ 2

σ 1

X1 − M1( )+ M 2     (4:6) 
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Chapter Five 
 
Correlation and regression 
 
 
1. Introduction 
 
Up to this point we have been concerned with single variables.  The 
present chapter will discuss relationships between two variables, and 
the measurement of this relationship by means of the product-
moment correlation coefficient.  This coefficient varies in value 
between 0 and 1.0.  It can be positive or negative in sign.  If scores on 
one variable rise as scores on the other one rise then the correlation is 
positive, while if scores on one variable fall as the other scores rise 
the correlation is negative.  For example height and weight are 
positively correlated because taller people tend to be heavier than 
smaller people, while mental speed and age are negatively correlated 
in adults, as mental speed drops with increasing age.  If there is no 
relationship at all between two variables the correlation is zero.  If the 
relationship is perfect, i.e. if there is complete correspondence 
between the two variables, the correlation will be 1.0.  (Complete 
correspondence in this case is indicated by individuals obtaining 
exactly the same Z score on both variables). 
 
 An important point to bear in mind is that the product-moment 
correlation coefficient measures the strength of a linear relationship 
between two variables.  If the relationship between two variables is 
not linear, then the correlation coefficient will be of little use.   A 
linear relationship exists when the graph showing the relationships 
between two variables is a straight line, or near enough to a straight 
line, for a straight line to be a reasonable approximation to it.  Figure 
5.1 shows some linear and non-linear relationships. 
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Problems 
 
A.  Which of the relationships in Figure 5.1 can be adequately 
      described by a product-moment correlation coefficient? 
 
B.   Which of the relationships represents a negative  
       correlation? 
 
C.    Which relationships are curvilinear? 
 
 
Answers 
 
A.  a; c.  
 
B.  c. 
 
C.  b; d; e. 
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2.  The Basic Formulae for the Product-Moment Correlation 
 Coefficient. 
 
Suppose that we have two variables X and Y, the product moment 
correlation coefficient between them is symbolised rxy and its formula 
is: 
 

   rx y =
ZX ZY∑
N

    (5:1) 

 
 
From the formula it can be seen that the correlation coefficient is the 
mean of the products of the Z scores.  To obtain the coefficient by this 
formula we need to take the two Z scores obtained by an individual, 
i.e. his Z score on X and his Z score on Y, and multiply them together.  
This is repeated for all individuals and the products so obtained are 
summed.  This sum is then divided by N, and the result is the value 
of rxy. 
 
As an example suppose that seven individuals complete tests X and 
Y and obtain the following scores: 
 

Scores 
Individuals   Test X  Test Y 

  A      1     12 
  B      2     14 Mean X = 4 
  C      3     10   σx= 2.0 
  D      4      6 
  E      5      8 Mean Y = 8.0 
  F      6      2   σy= 4.0 
  G      7      4 
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Converting these scores into Z scores and finding the products of 
each pair of Z scores gives the following: 
 
Individuals  ZX  ZY  ZX ZY 

 A  -1.5  +1.0  -1.5 
 B  -1.0  +1.5  -1.5 
 C  -0.5  +0.5  -0.25 
 D   0  -0.5   0 
 E  +0.5   0   0 
 F  +1.0  -1.5  -1.5 
 G  +1.5  -1.0  -1.5 
 

ZX ZY∑ =− 6.25  N = 7  rxy = -0.89 
 
This version of the formula for the product moment correlation 
coefficient is not the one most commonly found in basic text books, 
but it will be an extremely useful one for our purposes. 
 
    By simple manipulation this formula can be converted into a more 
common one, which will also be useful later. 
 

  rxy =
xy∑

Nσ xσ y

     (5:2) 

 
Proof 
 

(1) rxy =
ZxZy∑
N

 

 

(2) Zx = x
σ x

; and ZY = y
σ y

. 
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(3) So rxy = 

x
σ x

. y
σ y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ∑

N
 

 
(4) Multiplying numerator and denominator by σx. σy gives 
 

   
xy∑

Nσ xσ y

 

 
 
Neither of these formulae is very convenient for computational 
purposes so further operations would be necessary to derive easily 
computable formulae, but in the forms given they will be ideal for 
our purposes.  At this stage it should be noted that by multiplying 
both sides of 5:2 by .σx .σy  we obtain: 
 

   
xy∑

Nσ xσ y

      (5:3) 

 
The term on the right is called the covariance of X and Y.  
Covariances and formula (5:3) will be used frequently in later 
sections. 
 
 
 
 
3. The Scatter Diagram 
 
A scatter diagram is a graphical device for showing the distribution 
of scores on two variables.  The diagram is constructed by taking all 
subjects with a given score, X1, on one variable and plotting the 
distribution of Y scores for these individuals.  This will be the first 
column of the scatter diagram.  Next the Y scores for all obtaining 
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score X2 are plotted, forming the second column and so on.  As an 
example suppose that the following scores are obtained on two tests. 
 
 
 
 
     Tests       Tests 

Individuals X Y  Individuals  X Y 
 A  1 1   F  3 4 
 B  1 2   G  3 3 
 C  2 3   H  4 4 
 D  2 2   I  4 5 
 E  2 3   J  5 4 
 
 
These scores can be plotted on a scatter diagram as shown in Figure 
5.2. 
 
 6        
 5     1   
                      Y 4    1 1 1  
                 Scores 3   2 1    
 2  1 1     
 1  1      
 0        
  0 1 2 3 4 5 6 
             X Scores 
 
Figure 5.22  A scatter diagram of the data in table 5.3 
 
Of the two subjects scoring 1 on test X, one obtained a score of 1 on 
test Y, and the other a score of 2.   Of the three obtaining a score of 2 
on test X, two scored 3 on Y and one scores 2, and so on.  The scatter 
diagram can of course be read both ways.  It is easy to see what X 
scores were obtained by people scoring 3 on Y for example. 
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Usually there is a much larger number of scores involved in a scatter 
diagram.   If we draw a scatter diagram without grid lines and 
represent individuals by dots, we might obtain something by dots, 
we might obtain something like that shown in Figure 5.3.  
 
 
 
 
 
 
 
 
 
 
 
 Figure 5.3  Another scatter diagram 
 
 
 
In this scatter diagram there is a tendency for those scoring high on X 
to also score high on Y.  If the correlation was 1.0 there would be no 
scatter of scores within columns, and the points would all fall on a 
straight line.  When the correlation is zero the scores will fall in a 
circular pattern, (if the variables are normally distributed).   As the 
correlation rises from 0 to 1.0, the shape of the scatter becomes more 
elongated and ellipsoid until it becomes a single straight line.  Figure 
5.4 shows these changes visually. 
 
 
 
 
 
 
 
Figure 5.4  Changes in the outline of the scatter plot as the correlation between two  
                    variables increases 
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Changes in the range of scores on one variable will (a) affect the 
range of scores on the other, and (b) the size of the correlation 
coefficient obtained.  Suppose that the relationship between X and Y 
for the full range of scores is as shown in Figure 5.5.  This would 
represent a reasonably high degree of correlation.  If, however, we 
had a sample of subjects whose range of ability on X fell in the range 
A to B, this would curtail the range of Y scores to the range C to D.  
The shape of the scatter diagram obtained for this group would be as 
depicted in the smaller figure on the right in Figure 5.5. 
 
 
 
 
 
 
 
 
 
Figure 5.5  The effects of restriction of range on the shape of the scatter plot 
 
This smaller scatter diagram is more like the pattern of zero 
correlation, than is the scatter diagram for the full range, and indeed 
a restriction in range generally reduces the value of the correlation 
coefficient, (see Chapter 12, Section 4). 
 
Problem 
An investigator interested in the general relationship between 
creativity and intelligence, after finding a low relationship between 
these variables in a sample of university students, concludes that 
creativity is largely independent of intelligence.   Should he have 
done so? 
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4.     Correlation and Predicition: 
 
(1)  Guessing 
The main use of correlation coefficients is prediction.  The existence 
of a significant correlation coefficient means that X scores can be 
predicted from Y scores with better than chance accuracy.  If there 
were no correlation between X and Y then knowing the individual’s 
X score would tell us nothing about the likely Y score.  If we know 
nothing about an individual’s Y score and we have to guess it, then 
our best bet is that the score obtained will be the mode.  If we know 
what outcomes are possible, and do not know which outcome will 
occur, our best bet is that the most common outcome will occur.  This 
will lead to fewer mistakes in the long run than any other bet.  If you 
know that someone has a set of cards consisting of two hearts and 11 
spades in their hand, and someone chooses one at random, and you 
have to guess what it is, your best bet is that it is a spade.  Following 
exactly the same principle the mode is the best bet in the case of test 
scores.   With normal distributions the mode is the same as the mean.  
So the best strategy in attempting to predict Y from X or X from Y in 
the absence of any correlation between them is to choose the mode 
which in the case of test scores will usually be the mean.  By choosing 
the  mode we will be absolutely right more frequently than  by 
choosing any other value. 
 
However, being absolutely right is not the only criterion we might 
choose.  In predicting test scores we might be more concerned with 
the average distance of our predictions from the true value.  We 
might decide that we want our average error to be as near to zero as 
possible.  Suppose in the absence of other information we guess the 
mean as the most likely score, i.e. for each individual and then 
compute the differences between the obtained score X and the 
predicted score, the mean, we will have a distribution of (X - M)’s 
summing across individuals,  Σ(X - M) is obtained, and this we have 
seen earlier (2:3) is equal to 0.  So if we choose the mean the average 
error of our predictions will be zero.  It is possible to show that this 
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will be true of no other value.  Suppose that a different value D is 
chosen, where D is a score other than the mean.   
 
(1)  D = Score other than the mean. 
 
(2)  D = M – A (where A is a positive or negative number). 
 
(3)  X – D = X – (M – A). 
(4)  X – (M – A) = X – M + A. 
 
(5)  Therefore Σ(X – D) = Σ (X – M + A). 
 
(6)  So Σ(X – D) = Σ X – NM + NA. 
 
(7)  But M = Σ X/N, so ΣX = NM. 
 
(8)  So (6) becomes NM – NM + NA. 
 
(9)  So Σ (X – D) = NA. 
 

 (10)  And (X − D)
N

∑ = NA
N

= A . 

 
 
The value of A differs from zero, therefore, choosing a point other 
than the mean leads to a greater average error than would have 
ensued from the choice of the mean.    Thus if our interest is in 
obtaining the smallest average deviation between guessed and actual 
score we choose the mean.  
 
To summarize this section: 
 
(1)  If it is important to be absolutely right, guess the mode. 
(2)  If it is desirable that average error in prediction  should be 
      zero, then guess the mean.  
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 If we are interested in the smallest absolute average deviation, 
the best measure of central tendency to use, and the best guess to 
make, would be the median.  The sum of absolute deviations, i.e. 
deviations disregarding their sign, is smaller when the median is 
used than when any other point is chosen. 
 Fortunately most test scores are normally distributed and thus 
the mean = the mode = the median.  So there is no problem in 
deciding which to use as the best bet. 
 
5. Correlation and prediction:  (2)  Linear Regression 
 
Suppose that two tests have been administered to a group of subjects 
and the following scores obtained.  
 
       Tests       Tests 
 Subject X Y  Subject X Y 
    A  0 0     E  4 20 
    B  1 5     F  5 25 
    C  2      10     G  6 30  
    D  3      15   
 
    If these scores are plotted on a graph with X as the horizontal 
axis and Y as the vertical one, it will be seen that a straight line fits 
the points exactly.  This is shown in Figure 5.6. 
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Figure 5.6 
 
 
 
We can also construct an equation Y = bX for predicting Y scores 
from X scores.  In this case Y – 5X, each Y value is five times the 
corresponding X value.  
 
 The value b tells us the slope of the line.  By definition the slope 
of a line is given by taking two Y values, say Y1 and Y2  and their 
corresponding X values, X1  and X2  , and finding the value of: 
 

   Y2 −Y1

X2 − X1

 

 
 This slope is equal to the ratio of the change in the Y variable to 
the change in the X variable.  If Y goes down as X goes up, slope is 
negative, while if both rise together, slope is positive. 
 
 The next concept to be introduced is the intercept.  The Y 
intercept is the point where the line crosses the Y axis.  Consider the 
following sets of scores. 
 

      Tests             Tests 
 Subject X Y Subject X Y 
    A  0  5    E  4 25 
    B  1 10    F  5 30 
    C  2 15    G  6 35 
    D  3 20 

 
If we plot these again the relationship is linear as in Figure 5.7. 
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Figure 5.7 
 
 
But this time the line cuts through the Y axis at the value of 5.  
Therefore, a simple formula of the type Y = bX will no longer suffice.  
The formula has to be modified by taking the intercept into account.  
The symbol for an intercept is ‘a’. 
 
    Y = bX + a    (5.4) 
 
This is the general formula for a linear relationship. 
 
For the data presented above b can be found to be 5 and ‘a’ can be 
seen to be 5, thus Y = 5X + 5. 
 
In psychology, data, seldom, if ever, falls exactly on a straight line.  A 
group of individuals obtaining a given X score will not all get the 
same Y score.  Even if we compute the means for each group with a 
given Y score, the means are not likely to lie on a straight line.  For 
example, let us plot the following data: 
 

      Tests      Tests 
 Individuals X Y Individuals X Y 
  A 1 2  G 3 4 
  B 1 3  H 3 5 
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  C 1 4  I 3 6 
  D 2 3  J 4 5 
  E 2 5  K 4 6 
      F 2 5  L 4 8 

 
It can be seen in Figure 5.8 that although the points do not lie upon a 
straight line it is obvious that a linear prediction rule might have 
some value here. 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.8 
 
 
The problem is how do we find a straight line to fit the data, when 
the points do not lie in a straight line.  We need some criterion by 
which to choose amongst possible straight lines which might be fitted 
to the data.  The criterion used is the least squares criterion. 
 
The line of best fit is defined to be that line which minimizes the 
squared deviations between predicted and obtained scores.  A line so 
chosen is known as a regression line. 
 
If we decide that we want a linear equation for predicting Z scores on 
test Y, symbolized ˆ Z y( ), from Z scores on test X, (Zx), then will need a 
formula of the following type: 
 
   ˆ Z y = bZx + a 
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ˆ Z y  is used rather than Zy to indicate that it is an estimate of Zy which 
ill differ from Zy by the quantity ˆ Z y − Zy .  The least squares principle 
states that we must choose the values in the equation to make 

ˆ Z y − Zy( )∑
2

/ N , as small as possible.  It can be demonstrated that for 
this to be true: 
 
    a = 0    (5.5) 
 
Proof 
 
(1) ˆ Z Y = bZX + a 
 
(2) So ZY − ˆ Z Y = ZY − bZX( )− a 
 
(3) and ZY − ˆ Z Y( )2

= ZY − bZX( )2
+ a2 − 2a ZY − bZX( ) 

 
(4) so ZY − ˆ Z Y( )∑

2

= ZY − bZ X( )∑
2
+ Na2 − 2a ZY − bZX( )∑  

 

(5) and 
ZY − ˆ Z Y( )∑

N

2

=
ZY − bZX( )2

∑
N

+ a2 − 2a ZY∑
N

− b ZX∑
N

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 

(6) as 
ZY∑

N
= Z Y and ZX∑

N
= Z X  

 

     these both = 0, and therefore 2a ZY∑
N

− b ZX∑
N

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0 

 

(7) thus 
ZY − ˆ Z Y( )∑

N

2

=
ZY − bZX( )∑

N

2

+ a2 
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(8) as a2 must be positive, (all squared numbers are), for                              
ZY − ˆ Z Y( )∑

N

2

 to be at its lowest ‘a’ must equal zero 

 
Having demonstrated that ‘a’ must be zero, we can simplify the 
equation thus:   
     
    ˆ Z = bZX      (5:6) 
 
It can also be shown that bZX must equal rxyZX if the least squares 
criterion is to be met. 
 
Proof 
 
(1)   ZY − ˆ Z Y = ZY − bZX  
 
(2)   ZY − ˆ Z Y( )2

= ZY
2 + b2ZX

2 − 2bZX ZY  
 
(3)   ZY − ˆ Z Y( )∑

2

= ZY
2∑ + b2ZX

2 − 2b ZX ZY∑  
 

(4)   
ZY − ˆ Z Y( )∑

N

2

=
ZY

2∑
N

+ b2 ZX
2∑

N
− 2b

ZX ZY∑
N

 

 

(5)   
ZY

2∑
N

= σ Z
2 =1; ZX

2∑
N

= σ Z
2 =1; 

 

     and 
ZX ZY∑
N

= rxy  

 
     So we obtain  
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ZY − ˆ Z Y( )∑

N

2

=1+ b2 − 2brxy 

 
 
 
 
(6)   It will now be shown that if b is any value other than rxy then  
       1 + b2 – 2brxy will be larger in value than if b is equal to rxy 
 
       (a)  if b = rxy then (5) becomes 1 + r2xy- 2r2xy = 1 – r2xy 
 

          (b)  if b was other than rxy, say rxy – C then (5) becomes 
             1 + (rxy – C)2 – 2(rxy – C)rxy 
 
       (c)  this equals: 1 + r2xy + C2 – 2Crxy – 2r 2xy + 2Crxy 
             = 1 – r2xy + C2.  Which is 6(a) + C2 
 
       (d)  C2 must be positive as it is a squared value, so 6(c) must  
      be larger than 6(a).   Therfore, rxy is the value which gives 
      the smallest value of ZY − ˆ Z Y( )∑

2

 
 
 
Equation (5:6) is called the linear regression equation for predicting 
ˆ Z Y  from ZX .  For raw scores the linear regression equation will be: 

 

   ˆ Y = rxy

σ y

σ x

X − M x( )+ M y          (5:7)   

 
Problems 
 
A.   What will be the value of ˆ Z Y  from ZX .  For raw scores the linear 
regression equation will be: 
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   ˆ Y = rxy

σ y

σ x

X − M x( )+ M y    (5:7) 

 
Problems 
 
A.  What will be the value of ˆ Z Y  when ZX equals Z X ?  
B.   What will be the value of ˆ X when Y equals My? 
 
Answers 
 
 
A.  ˆ Z Y = rxyZx ; therefore when ZX = ZX = 0. 
      ˆ Z Y = 0× rxy = 0 = Z Y . 
 

B.   ˆ X = rxy

σ x

σ y

Y − M y( )+ M x ; therefore when Y = M y , 

 

       X = rxy

σ x

σ y

M y − M y( )+ M x = M x  

 
In both cases, when the predictor variable assumes its mean value, 
the predicted value becomes the mean of the criterion variable. 
 
Thus a regression line passes through the point of intersection of M x  
and M y .  It is also true that:- 
    ˆ M y= M y      (5:8) 
 
Proof 
 

(1)   ˆ M y =
ˆ Y ∑

N
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(2)   
ˆ Y ∑

N
=

M y + rxy σ y /σ x( ) X − M x[ ]( )∑
 

 
 
 (This is obtained by use of Formula (5:7) 
 
 
 
 
 
(3)   Therefore; 
 

  
ˆ Y ∑

N
=

NM y + rxy σ y /σ x( ) X − NM x∑[ ]
N

 

 

  = M y = rxy

σ y

σ x

M x − M x[ ] 

 
(4)   Therefore: ˆ M y = M y  
 
 
We can now prove Formula (5:7) 
 
 
Proof 
 

(1)   ˆ Z Y =
ˆ Y − ˆ M y

σ y

=
ˆ Y − M y

σ y

 

 
(2)   and  ˆ Z Y = rxyZX  
 

(3)   but  ZX = X − M x

σ x
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(4)   So ˆ Z Y =
ˆ Y − M y

σ y

= rxy

X − M x( )
σ x

 

 
(5)   Multiplying the last two terms of (4) by σy gives 
 

  ˆ Y − M y = σ yrxy

X − M x( )
σ x

 

 
 
(6)   A little rearrangement gives: 
 

  ˆ Y − M y = rxy

σ y

σ x

X − M x( ) 

 
(7)   Adding My to both sides we obtain: 
 

  ˆ Y = rxy

σ y

σ x

X − M x( )+ M y  

 
This, as stated above, is the raw score linear regression equation for 
predicting Y from X. 
 
 
 
Problems 
 
Given two tests X and Y with Mx = 50; σx = 10, and My = 100, σy  = 20, 
and rxy = + 0.80: 
 
A.   Find the predicted ˆ Z Y  for someone who scores 30 on test X. 
B.   Find the predicted raw score ˆ Y ( ) for someone who scores 90 on       
      text X. 
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Answers 
 

A.    ˆ Z Y = rxyZX , and ZX = 30 − 50
10

= −2.0 

 
        So rxy ZX = 0.80× −0.20( )= −1.60 
 
        So ˆ Z Y = −1.60  
 

B.     ˆ Y = rxy

σ y

σ x

X − M x( )+ M y   so 

 

        ˆ Y = 0.80 20
10

90 − 50( )+100 =164  

 
The slope of the regression line of the Y scores on the X scores, i.e. the 
best fit line for predicting Y from X, has been shown to be 
rxy σ y /σ x( ).  If in (5:7) we had been concerned with predicting X from 
Y instead of Y from X we would have found that instead of 
rxy σ y /σ x( ) we would have obtained rxy σ x /σ y( ). 
 
This would be the slope of the regression line for predicting X from 
Y.  In both cases the slope is the product of the correlation coefficient 
and the ratio of the standard deviations, and in both cases the 
standard deviation of the predicted variable is the numerator of the 
ratio.  The moral of this tale is that except in the case where rxy =1.0 
there will be two regression lines in the scatter diagram one with 
slope by.x and one with slope bx.y.  The subscript y.x means Y 
predicted from X, and x.y means X predicted from Y.  The slopes of 
the regression lines as correlation increases are shown in Figure 5.9, 
where it can be seen that as rxy increases, the regression lines get 
closer together until at a correlation of 1.0 they become one line. 
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Figure 5.9 Changes in the relationships of the regression lines as correlation increases 



Chapter Six 
 
The interpretation of  
correlation coefficients 

 
 
1. The Standard Error of Estimate 
 
In the last chapter it was shown that the slope of the regression 
line in Z score terms is rxy.  During the proof that if the least 
squares principle is adopted the slope must be rxy, it was shown 
that: 

 
ZY − ˆ Z Y( )2

∑
N

=1− rxy
2    (6:1) 

   
 
(This was demonstrated in steps 5 and 6 of the proof that b must   
  equal rxy.   See page 47). 
 

Recalling that the formula for the variance is (X −M )2

N
∑   it can be 

seen that the left hand side of (6:1) has some similarities to the 
variance.  The difference is that in (6:1) the deviations are not from 
the mean but from the predicted score, which will of course fall on 
the regression line.  Hence the deviations in (6:1) are deviations of 
scores about the regression line.  Obtained Y scores will be normally 
distributed about the regression line with a mean of rxyZx and a 

variance of 
ZY − ˆ Z Y( )2

∑
N

or 1− rxy
2 . The standard deviation of the 

distribution will be 1− rxy
2 .     This value is called the standard error 

of estimate, and is the standard deviation of errors of prediction 
about the regression line. 
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Standard error of estimate = σ est.     (6:2) 
 
                   = (a) (in Z scores) 1− rxy

2  

           = (b) (in raw scores) σ 1− rxy
2  

 
The standard deviation involved in (6:2(b)) is the standard deviation 
of the scores being predicted. 
 
The standard error of estimate is to be regarded just like an ordinary 
standard deviation.  Provided that the assumptions of (a) normal 
distributions of scores in the rows and columns of the scatter 
diagram, and (b) of equal standard deviations in columns, and (c) of 
equal standard deviations in rows are not seriously violated it can be 
used for assessing the likelihood of deviations of a given magnitude 
from the regression line.  (Note that assumptions (b) and (c) are 
separate; the standard deviations of columns do not have to be the 
same as the standard deviations of rows.)  The similarity of standard 
deviations and standard error of estimate is emphasized in Table 6:1, 
which can be used to solve the problems following it. 
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     TABLE 6:1 
  SIMILARITY OF STANDARD DEVIATION AND  
          STANDARD ERROR OF ESTIMATE 
                   Proportion       Proportion of 
     of cases         cases lying 
x
σ
= Z     between    Y − ˆ Y 

σ 1− rxy
2

      between Y and 

   M and Z       regression line 
 
 .00   .0000    .00   .0000 
 .10   .0398    .10   .0398 
 .20   .0793    .20   .0793 
 .50   .1915    .50   .1015 
1.00   .3413   1.00   .3413 
2.00   .4772   2.00   .4772 
3.00   .49865  3.00   .49865 
 
Problems 
 
A.   A subject obtains a T score of 70 on a test of intelligence, which    

is known to have a correlation of +.60 with examination marks.  
The examination result shows the subject to be at the 50th 
percentile.  Has he done worse than was expected? 

 
B. If two tests X and Y correlate .8 with each other and Mx is 100, 

and σx is 15 while My is 50, and σy is 10, what proportion of 
people with an average score on X would you expect to score 
between 44 and 56 on Y? 
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Answers 
 
A.   Using Z scores:- 
       (a)  ˆ Z Y = rxyZX = .60×2 = +1.20 
 
       (b)  The score on Y is at the 50th percentile so ZY = 0 
 
       (c)   The standard error of estimate = 1− rxy

2 = 1− .602 = .80  

       (d)   ZY − ˆ Z Y( )σ est . =
0−1.20

.80
= −1.50 

 
 So the subject’s exam mark is 1.5 standard errors of estimate 
 below the expected mark.  Reference to Table 6:1 shows that if it 

had been 1.0 standard error below 84.13 per cent would have 
 done better so we can say that over 84.13 per cent of students of 

this subject’s intellectual level would have been expected to 
 do better in the examination. 
 
B. Using raw scores 

 (1)  ˆ Y = rxy

σ y

σ x

X −M x( )+M y  

 (2)   =.80 10
15

X −M x( )+50 = 50 

 σ est . =σ y 1− rxy
2 =10 1− .802 = 6.0 

 
 (3)  Treating 56 as an obtained score Y we can find the  

        ratioY − ˆ Y 
σ est .

= 56−50
6

= +1.0  

 
       So consulting Table 6:1, 34.13 per cent of people scoring at the 

mean on test X would be expected to score between 50 and 56 on 
test Y. 

 
 (4)   Repeating these operations for Y = 44 we find 
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        44 −50
6

= −1.0.  So 34.13 per cent would be expected to 

        score between 44 and 50 on Y. 
 
 (5)   Adding these together gives 68.26 per cent which is the  
        percentage of those scoring at the mean on X who would 
       be expected to score between 44 and 56 on Y. 
 
 Let us consider what happens to the difference between 

predicted scores and predictor scores as the correlation 
coefficient changes in value.  If the correlation is zero: 

 
 (1)   the best estimate of the predicted Z score is zero. 
 
 (2)   the standard error of estimate will have the same value as 
       the standard deviation. 
 
 Both of these statements can be easily verified by substituting 
zero for rxy  in the appropriate formulae.  
 
 If the correlation is 1.0: 
 

(1)    the best estimate of the predicted score is that score which 
has the same Z score value as the predictor score. 

 
(2) the standard error of estimate will be zero.  All scores will 

fall on the regression line and there will be no scatter of 
scores around it. 

 
 Again it can be easily verified that these statements are correct. 
 Table 6:2 shows changes in the accuracy of prediction as rxy  
changes, assuming a Zx  of +3.0.  
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TABLE 6:2 
ACCURACY OF PREDICTION AS A FUNCTION 

OF rxy  
 

    rxy   σ est   ˆ Z Y , ZX = 3.0( ) 
 

    .00     1.00   σ y    .00 
    .10       .995  σy   .30 
    .20       .980  σy   .60 
    .30       .954  σy   .90 
    .40       .917  σy         1.20 
    .50       .866  σy         1.50 
   .60       .800  σy         1.80 
   .70       .714  σy         2.10 
    .80       .600  σy         2.40 

  .90       .436  σy         2.70 
      1.00      0          3.00 

 
As rxy  increases the size of the standard error of estimate falls, and the 
difference between the predictor score and the predicted score 
becomes less, until at rxy  = 1.00 ZY = ZX  and there is no error of 
prediction at all. 
 
Sometimes a measure called the index of forecasting efficiency is 
used.  This gives the percentage reduction in σest.      as a function of 
rxy .   Its formula is: 
 
Index of forecasting efficiency = E 
        = 100(1 1− rxy

2 )  (6:3) 
 
Thus if rxy is .80 it can be seen from Table 6:2 that 1− rxy

2 = .600 so the 
value of E equals 100(1 - .60) = 40.  So the standard deviation of error 
has been reduced by 40 per cent of what it would have been with  rxy 
= 0.  It remains nevertheless at 60 percent. 
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2.  The Variance Accounted for by  
      a Correlation of a Given Size 
 
It is possible to divide the variance of a predicted variable into two 
parts: 
 
(1) that accounted for by the predictor variable; and  
 
(2) that not accounted for in this way, the residual variance. 
 
 
The use of the phrase ‘accounted for’ is not to be taken in a 
deterministic way.  If two variables are correlated then the 
proportion of variance in either accounted for by the other will be the 
same.  Putting the above statements as a formula gives 
 
 

ZY − Z Y( )2

∑
N

=
ZY − ˆ Z Y( )2

∑
N

+
ˆ Z Y − Z Y( )2

∑
N

   (6:4) 

 
Where 
 

ZY − Z Y( )2

∑
N

= total variance 

 
ZY − ˆ Z Y( )2

∑
N

= residual variance 

 
ˆ Z Y − Z Y( )2

∑
N

= variance accounted for  
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Proof 
 
(1)   ZY − Z Y = ZY − ˆ Z Y( )+ ˆ Z Y − Z Y( ) 
 
(2)   So ZY − Z Y( )2

= ZY − ˆ Z Y( )2

+ ˆ Z Y − Z Y( )2

 

        +2 ZY − ˆ Z Y( ) ˆ Z Y − Z Y( ) 
 
(3)   As Z Y = 0,2 ZY − ˆ Z Y( ) ˆ Z Y − Z Y( )= 2 ˆ Z Y ZY − ˆ Z Y( ) 
 

(4)   
ˆ Z Y − Z Y( )2

∑ = ZY − ˆ Z Y( )2

+ ˆ Z Y − Z Y( )2

∑∑

+2 ZY ZY − ˆ Z Y( )∑
 

 
(5)   However ˆ Z Y = rxyZX so 2 ˆ Z Y ZY − Z Y( )= 2 rxy∑ ZX∑  
       ZY − rxyZX( ) 
 
(6)   Multiplying this out gives 
 2 rxyZX ZY − rxyZX( )∑ = 2rxy ZX ZY −2rxy

2 ZX
2∑∑  

 

(7)   But (a) as rxy =
Z X ZY∑
N

, ZX ZY∑ = Nrxy = Nrxy and (b) it 

       has been shown in (3:4) that Z 2∑ = N.  So (6) becomes 
       2rxy Nrxy −2rxy

2 N = 0 . 
 
(8)   Therefore, from (4) 
        ZY − Z Y( )∑

2
= ZY − ˆ Z Y( )2

∑ + ˆ Z Y − Z Y( )2

∑  
 
(9)   Dividing by N gives the variance: 
 

       
ZY − Z Y( )2

∑
N

=
ZY − ˆ Z Y( )∑

N

2

+
ˆ Z Y − Z Y( )∑
N

2
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       or (as Z Y = 0) 
 

      
ZY − ˆ Z Y( )∑

N

2

+
ˆ Z Y

2∑
N

 

 
The residual variance, i.e. that left after the effects of X have been 

removed is 
ZY − ˆ Z Y( )2

∑
N

.  However from (6:1) this is equal to  

1− rxy
2 .  So:- 

 
(a) Total variance of Z scores = 1.0. 
 
(b) Residual variance = 1 - r xy

2 . 
 
(c) Therefore accounted for variance = 
    1 - 1− rxy

2( )= rxy
2 

 
So the variance accounted for with a total variance of 1 is rxy

2 .  The 

proportion of variance accounted for is therefore 
rxy

2

1
= rxy

2 . 

 
Proportion of variance accounted for = rxy

2     (6:5) 
 
 
Problems 
 

A. Give a formal proof that 
ˆ Z Y

2∑
N

= rxy
2  

 
B. Give a formal proof that the proportion of variance accounted   
 for = rxy

2 .  Starting with 
 



Philip Ley. Quantitative Aspects of Psychological Assessment                                 74 
 

© 1972, 2007 Philip Ley Text re-typed for computer by Irene Page 
 

  Accounted for variance
Total variance

   =

1
N

ˆ Z Y
2∑

1
N

ZY
2∑
 

 
Answers 
 

A.   (1)   
ˆ Z Y

2∑
N

=
rxy

2ZX( )2

∑
N

 

 

       (2)   = rxy
2 ZX

2∑
N

 

 

       (3)   As 
Z 2∑

N
=σ Z

2 =1.0, ZX
2∑

N
=1.0 

 

       (4)   Therefore 
ˆ Z Y∑

N
= rxy

2 1( )= rxy
2  

 

B.    (1)   

1
N

ˆ Z Y
2∑

1
N

ZY
2∑
=

ˆ Z Y
2∑

ZY
2∑
   

(Numerator and Denominator
  multiplied by N)

 

 
       (2)    from (6:4) ZY

2∑ = ˆ Z Y
2∑ + ZY − ˆ Z Y( )2

∑   and from (A) 

                ˆ Z Y
2 = Nrxy

2∑  
 

       so   
ˆ Z Y

2∑
ZY

2∑
=

Nrxy
2

Nrxy
2 + ZY − ˆ Z Y( )2

∑
  

 
       (3)   But from (6:1) ZY − ˆ Z Y( )2

∑ = N 1− rxy
2( ) 
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       so   
ˆ Z Y

2∑
ZY

2∑
=

Nrxy
2

N rxy
2 + 1rxy

2( )[ ]
=

Nrxy
2

N 1( )
 

 

       (4)    Dividing the right hand term by N leaves 
ˆ Z Y

2∑
ZY

2∑
= rxy

2  

 
rxy

2   is called the coefficient of determination, and it indicates the 
proportion of variance in each of two correlated variables which is 
shared by both.   A diagrammatic representation of rxy

2   is given in 
Figure 6.1. 
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3. The Coefficient of Alienation 
 
It has been shown that rxy

2  is equivalent to the proportion of explained 
or accounted for variance, so rxy

2  must be the square root of this 
proportion. 
 

rxy =
Explained Variance

Total Variance
    (6:6) 

 
The correlation coefficient is an indicator of the degree of relationship 
between two variables.  An index of the degree of lack of relationship 
is also available.  It is the square root of the proportion of 
unexplained variance and is called the coefficient of alienation. 
 
 

  
Coefficient of alienation = Unexplained Variance

Total Variance
= 1− rxy

2

 

 
 
This sometimes provides a useful corrective to over-enthusiasm 
about a given value of rxy.  Table 6:3 shows the relationships between 
values of  rxy. and the coefficients of determination and alienation.  It 
will be seen that not until  rxy. is over.70 is the degree of relationship 
larger than the degree of lack of relationships, and that it takes a 
correlation coefficient of over .70 to account for 50 per cent of the 
variance.   
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TABLE 6:3      COEFFICIENTS OF DETERMINATION AND  
ALIENATION AS A FUNCTION OF  rxy. 

    Coefficient of   Coefficient of 
  rxy.  Determination    Alienation 
  .00   .00          1.00 
  .10   .01    .99 
  .20   .04    .98 
  .30   .09    .95 
  .40   .16    .92 
  .50   .25    .87 
  .60   .36    .80 
  .70   .49    .71 
  .80   .64    .60 
  .90   .81    .44 
        1.00          1.00    .00 
 
It is apparent from this table that in terms of variance accounted for a 
correlation of .40 is not twice as large as one of .20.  A correlation of 
.20 accounts for 4 per cent of the variance while a correlation of .40 
accounts for four times as much. 
 
Problems 
 
A. What value of  rxy.  accounts for nine times as much variance as 

an  rxy. pf /30? 
 
B. In terms of variance accounted for, what correlation is one 

hundredth of the size of a correlation of 1.0? 
 
C. What is the value of  rxy.  when 75 per cent of the variance is not 

accounted for? 
 
D.  What is the value of the coefficient of alienation when 9 per 

cent of the variance is accounted for? 
 
Answers 
A.   .90; B.   .10; C.   .50; D.   .95. 



Chapter Seven 
 
Partial and Part correlation 
 
1.   Partial correlation 
 
Sometimes it is desirable to know the relationship between two 
variables with the effects of a third variable held constant.  As an 
example suppose that it has been demonstrated that both intelligence 
and number of hours worked are correlated with exam marks, and 
further that intelligence and number of hours worked are also 
correlated.  All of these correlations are positive.  The more intelligent 
tend to obtain higher exam scores and tend to work harder, those 
who work harder tend to be more intelligent and obtain higher exam 
marks.  In a situation like this a straight forward correlation between 
intelligence and exam marks will also reflect the effect of hours 
worked on both intelligence and exam marks.  Clearly it would be 
useful for us to be able to find the ‘pure’ correlation between 
intelligence and exam marks with hours worked held constant.  
‘Holding constant’ in this situation is known as partialling out, and 
the technique for partialling out the effects of one or more variables 
from two others, in order to find the relationship between them is 
called partial correlation. 
  
For this chapter and the next one a change in subscripts is desirable.  
Instead of using letters as subscripts with correlation coefficients it 
will be more useful to refer to the variables being correlated as 1, 2, 3, 
etc. r12 will be the correlation between variables 1 and 2, r14 between 
the first and fourth variable and r1n between the first and nth 
variable. 
 
Suppose that we have three variables 1, 2, and 3 and we wish to find 
the relationship between 1 and 2, with the effects of 3 partialled out 
from both.  In fact what we want to do is correlate the residual scores 
of 1 and 2, after the parts of 1 and 2 predictable from 3 have been 
subtracted.  It has been shown previously that the predicted Z1 will 
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be r13Z3.  The symbol for Z1 with the effects of 3 partialled out will be 
Z1.3, and generally Z on variable X with Y partialled out will be ZX.Y.  
The residual Z score on 2 will be Z2 – r23Z3 = Z2.3.  (Note that in all of 
these cases the subscript of the variable partialled out comes after the 
dot.) 
 
The partial correlation coefficient r12.3 will be: 
 

   r12.3 =
r12 − r13r23

1− r13
2 1− r23

2
    (7:1) 

  
 Proof 
 
It is desired to correlate the residual scores Z1 − r13Z 3( ) and 
Z 2 − r23Z 3( ) and the formula for the correlation coefficient is 

  
xy∑

Nσ xσ y

 

 
    So it will be necessary to work out 
 
(a) the covariance of the residual scores and 
 
(b) the standard deviation of the residual scores. 
 
 
 
 The covariance will be worked out first. 
 

(1) 
Z1 − r13Z 3( ) Z 2 − r23Z 3( )∑ / N =

Z1Z 2 + r13r23Z 3

2 − r23Z1Z 3 − r13Z 2Z 3( )∑ / N
 

 

(2)  =
Z1Z 2∑
N

+ r13r23

Z 2
3∑

N
− r23

Z1Z 3∑
N

− r13

Z 2Z 3∑
N
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(3)        Recalling that 
Z1Z 2∑
N

= r12etc., and that 
Z 3

2∑
N

=σ Z
2 =  

  1.0 etc. (2) becomes: r12 + r13r23 − r23r13 − r13r23  
 
(4) this equals r12 − r13r23  
 
 
 
Turning now to the standard deviation of the residual scores we have  
 

(5) σ Z1.3 =
Z1 − r13Z 3( )2

∑
N

 

 

(6) =
Z1

2∑
N

+ r13
2 Z 3

2∑
N

−2r13

Z1Z 3∑
N

 

 

(7)   
Z1

2∑
N

=1.0; Z 2
3∑

N
=1.0; and Z1Z 3∑

N
= r13 

 
 
 So (6) becomes 1+ r13

2 −2r13
2 = 1− r13

2  
 
 

(8)   Repeating these steps for Z 2.3 =
Z 2 − r23Z 3( )2

∑
N

  gives 

 
     1− r23

2  
 
 
(9)   Putting (4) as the numerator and the products of (7) and (8) 
       as the denominator gives:- 
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    r12.3 =
r12 − r13r23

1− r13
2 1− r23

2
 

 
     The other formulae for the 3 variable case are: 
 

 (a)  r13.2 =
r13 − r12r23

1− r12
2 1− r23

2
     (7:2) 

 

     (b)  r23.1 =
r23 − r12r13

1− r12
2 1− r13

2
 

 
In effect the partial correlation coefficient r12.3 tells us what the 
relationship between variables 1 and 2 would be if everyone obtained 
the same score on variable 3. 
 
 
 
Problems 
 
A. Calling exam marks (1), intelligence (2) and hours worked (3), 

and given r12 = .50, and r13=.40, and r23 of .40 work out the value 
of r12.3. 

 
B. Given three variables (1) prognosis in terms of weeks to 
 recover, (2) an anxiety questionnaire, (3) a physiological 

measure, and r12 = .40; r13 = .30, and r23 = .80, what is the 
correlation of the physiological measure with prognosis with 
the anxiety questionnaire results partialled out from both 
variables? 
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Answers 
 

A.   r12.3 =
.50− .40× .40( )
1− .402 1− .402

= .34
.86

= .396  

 

B.   r13.2 = from (7 : 2) r13 − r12r23

1− r12
2 1− r23

2
 

 

       =
.30− .40× .80( )
1− .402 1− .802

= −.02
.93× .60

= −.036  

 
 
A partial correlation coefficient with one variable partialled out is 
called a first order partial r, with two variables partialled out a 
second order partial r and so on.  The general formula for a second 
order r is: 
 

  r12.34 =
r12.3 − r14.3r24.3

1− r14.3
2 1− r24.3

2
     (7:3) 

 
 
For an Nth order partial the formula is: 
 

r12.34...N =
r12.34... N−1( ) − r1N .34... N−1( )r2N .34... N−1( )

1− r1N .34... N−1( )
2 1− r2N .34... N−1( )

2
    (7:4) 

 
 
Partial correlation assumes linearity of regression between all 
variables.  If there are serious departures from linearity a partial r 
will be meaningless. 
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2.    Part or Semi-partial Correlation 
 
In the case of partial correlation the variable partialled out is 
partialled out from both of the variables of interest.   However, it is 
also possible to correlate partialled scores on one variable with 
ordinary scores on another.   This type of correlation is called part or 
semi-partial correlation.  The formula for the part correlation 
coefficient is: 
 

Part correlation coefficient: r1 2.3( ) =
r12 − r13r23

1− r23
2

   (7:5) 

 
 
Note that the partialled variable and the variable partialled from it 
are put in brackets so r1 2.3( ) is the correlation between 1 and 2 with the 
effects of 3 partialled out from 2. 
 
 
 
Proof 
 

(1)     r1 2,3( ) =
Z1 Z 2 − r23Z 3( )∑
N 1− r23

2
 

 
(The standard deviation of the Z1 scores will be 1 and it has been 
shown in 7:1 step 8 that the standard deviation of  
 

Z 2 − r23Z 3[ ]= 1− r23
2  ) 

 
 

(2)     r1 2,3( ) =
Z1Z 2 − r23 Z1Z 3∑∑

N 1− r23
2
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(3)   Dividing numerator and denominator by N gives: 
 

       r1 2,3( ) =
r12 − r23r13

1− r23
2

 

 
 

      (because 
Z1Z 2∑
N

= r12 and Z1Z 3∑
N

= r13) 

 
 
Other formulae for the three variable case include: 
 

(a)      r2 1.3( ) =
r12 − r13r23

1− r13
2

      (7:6) 

 

(b)      r3 1.2( ) =
r13 − r12r23

1− r13
2

 

 
 
 
Part or semi-partial correlation has the effect of reducing the 
correlation between the partialled variable and the variable partialled 
from it to zero. 
 
   r3 1.3( ) = r1 2.1( ) = r2 1.2( ) etc.= 0     (7:7) 
 
 
Proof 
 
(1)    r1 2.1( ) = r12 − r12r11 
 

(2)     r11 =
Z1Z1∑
N

=
Z1

2∑
N

=1.0 
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(3)   So (1) becomes 
 

  r1 2.1( ) =
r12 − r12

1− r12
2
= 0 

 
 
 
Both part and partial correlation are useful in prediction problems, 
and have a fairly straightforward relationship to multiple 
correlations, as will be seen in the next chapter. 
 
 
 
 
Problems 
 
A.   Given the following data on the relationship between 

prognosis (1), anxiety questionnaire (2), and physiological 
measure (3), r12 = .40 r13 = .30, and r23 = .80.  What is the 
correlation between the physiological measure and prognosis 
with anxiety questionnaire scores partialled out from the 
physiological measure i.e. what is the value of r1 3.2( ) ? 

 
B. A performance test (1) and a verbal intelligence test (2) are used 

for predicting scholastic success (3).  You want to know the 
correlation between the performance test, with verbal 
intelligence partialled out from it, and exam marks. If r12 =.60, 

 r13 = .60, and r23 = .40, what will the correlation be? 
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Answers 
 

A.  
r1 3.2( ) =

r13 − r12r23

1− r23
2
=

.30− .40× .80( )
1− .802

= −.02
.60

= − .033
 

 
  

B.  
r3 1.2( ) =

r13 − r12r23

1− r13
2
=

.60− .60× .40( )
1− .602

= .36
.80

= + .45
 

  
 
 
3.   The Partial Standard Deviation 
 
As has been stated previously, scores from which another variable 
has been partialled out are called partial scores or residual scores.  
Partial scores have been used in our discussion of the partial and part 
correlation.  The formula for a partial score with one variable 
partialled out is: 
 
 
   Partial score = Z1.2 = Z1 − r12Z 2   (7:8) 
 
 
The standard deviation of these partial scores has also been used and 
derived in 7.1, (5 to 8). 
 
   Partial standard deviation =σ Z1.2 = 1− r12

2  (7:9) 
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In terms of raw scores (7:8) becomes: 
 

Partial score:  Y .X =Y − rxy

σ y

σ x

X −M x( )+M y    (7:10) 

 
or in terms of deviation scores: 
 

Partial score:  y.x = y− rxy

σ y

σ x

x       (7:11) 

 
 
The raw score standard deviation is. 
 
   σ y .x =σ y 1− rxy

2       (7:12) 
 
 
Recalling that rxy

2  is the coefficient of determination, and that the 
coefficient of determination is the proportion of variance accounted 
for, it can be seen from (7:9) that the partial standard deviation is the 
square root of the variance remaining after variance attributable to 
another variable has been subtracted.   To convert this to a raw score 
form as in (7:12) 1− rxy

2  is multiplied by the standard deviation of 
the partialled variable.  
 
 
Higher order partial standard deviations are also equal to the square 
root of the variance remaining after the effects of the other variables 
have been partialled out.  Let us consider the case of σ 1.23, which is 
the partial standard deviation of variable 1 with variables 2 and 3 
partialled out.  The proportion of variance in variable 1 accounted for 
by variable 2 will be r12

2.  Thus after variable 2 has been partialled out 
the proportion of variance remaining will equal 1− r12

2.  Of this 
remainder some will be accounted for by variable 3.  If variable 2 and 
variable 3 were not related the variance attributable to variable 3 
would be r13

2.  The variance remaining after the partialling out of 
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variables 2 and 3 would, therefore, be 1− r12
2 − r13

2.  The square root of 
this would be the partial standard deviation. 
 
 
The situation becomes more complicated when variables 2 and 3 
correlated with one another.  Starting as before, the proportion of 
variance accounted for by variable 2 will be r12

2, and as before the 
remaining variance will equal 1− r12

2. 
 
 
However, because 2 and 3 are correlated it will not be possible 
merely to subtract r13

2 as the proportion of variance attributable to 
variable 3.  As variables 2 and 3 are correlated some of the variance in 
1 accounted for by 2, will be shared with variable 3.  To obtain the 
proportion of variance in 1 accounted for by 3, from which variance 
also accounted for by 2 is excluded, it is necessary to use the partial 
correlation coefficient r13.2.  The square of this will give the proportion 
of variance in 1 which is attributable to 3 after the effects of 2 have 
been excluded from 1 and 3.  
 
 
Therefore: 
 
(a)   the variance remaining after variable 2 has been partialled  
     out will be:- 
     1− r12

2 
 
(b)   of this remainder, variable 3 will account for a proportion of  
     r13.2

2 , leaving a remainder of  
     1− r13.2

2  
 
 
Multiplying (a) and (b) together will give the variance remaining 
after both 2 and 3 have been partialled out.  So the formula for the 
variance not accounted for by the partialling out of the two variables 
will be: 
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Partial variance with two variables partialled out 
 

Z score form( )= σ Z1.23
2 = 1− r12

2( )1− r13.2
2( )    (7:13) 

 
  σ Z1.23 = 1− r12

2( )1− r13.2
2( )     (7:14) 

 
Raw score form 
   

σ 1.23 =σ 1 1− r12
2( ) 1− r13.2

2( )     (7:15) 
 
Suppose that r12 = .71,  and r13.2 = .50.  The proportion of  
Variance accounted for by r12 = r12

2 = .50.  Fifty per cent of the variance 
is accounted for which leaves 50 per cent not accounted for.  Of this 
remaining 50 per cent, 25 per cent can be accounted for by variable 3 
with 2 partialled out from it.  Thus 75 per cent of the 50 per cent 
remaining after the effects of variable 2 have been allowed for will 
still remain unaccounted for after variable 3 has been partialled out.  
 
 
The partial standard deviation will therefore be .50× .75 = .375.  
This is the value which would also be obtained by use of formula 
(7:13). 
 
By similar reasoning it can be shown that the partial standard 
deviation of variable 1 with variables 234...N partialled out is: 
 
σ Z1.234...N           (7:16) 
= 1− r12

2( )1− r13.2
2( )1− r14.23

2( )⋅ ⋅ ⋅ 1− r1N .234... N−1( )
2[ ] 

 
 
The raw score equivalent can be obtained by multiplying by σ 1. 
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Problem 
 
Given r12 = .40, r13 = .50,  and r23 = .60,  what is the value of σ Z 1.23? 
 
 
Answer 
 
(a) Two correlation coefficients are needed r12 and r13.2.  The 

formula for the latter will be: 
 

r13 − r12r23

1− r12
2 1− r23

2
=

.50− .40× .60( )
1− .16 1− .36

= .26
.92× .80

  = .35 

 
(b) The formula for the partial standard deviation thus becomes: 
 
  1− .402( )1− .352( )= .74 = .86  
 
      
 
 
 
     
 
 
 
 
 



Chapter Eight 
 

Multiple regression and prediction 
 
1.   The Multiple Regression Equation 
 
In many applied situations there are a number of variables 
correlated with a criterion and the problem arises of how best to 
weight them to obtain the most accurate prediction of the criterion.  
If it can be assumed that the regressions of the variables on one 
another are linear, then the usual technique is to use a multiple 
linear regression equation.  It will be recalled that in the two 
variable case the linear regression equation was: 
 
    ˆ Y = a + bX  
 
In the multi-variate case the multiple regression equation is: 
 
   ˆ Y = a+ b1X1 + b2 X2 + ...bn Xn    (8:1) 
 
Just as the weights in the two variables case were chosen to 
minimize the sum of squared deviations between predicted and 
obtained scores - the principle of least squares – so in the multi-
variate case.  Weights are chosen to make the value of: 
 
   Y − a − b1X1 − b2 X2 − ...bn Xn( )2

∑  
 
as small as possible. 
  
The weights assigned to the various predictor variables will be 
determined by: 
 
(a)   the correlation between the predictor variable and the 
    criterion; and 
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(b)   the intercorrelations of the predictor variables. 
 
The first of these is probably fairly obvious.  In general the higher 
the correlation between a predictor variable and the criterion the 
higher its weight would be expected to be.  The second is also fairly 
clear.  Ideally we would like predictor variables with: 
 
(a)   high correlations with the criterion; and 
 
(b)   low correlations with each other. 
 
This is because the higher the correlations between the predictor 
variables, the more variance they share in common and the more 
likely it becomes that parts of the criterion variance accounted for 
by each will overlap with criterion variance accounted for by the 
other.  These considerations are presented diagrammatically in 
Figure 8.1, which shows two situations.  In 8.1(a) there is no 
correlation between predictors and in 8.1(b) the predictors are 
correlated.  In the diagram the predictor variables are shown as 
oblongs 1, 2, and 3, and the criterion as a circle, O. 
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Turning to 8.1(a) first it will be seen that the amount of the criterion 
covered by the three predictors is 1’ + 2’ + 3’, which are the parts of 
the predictors overlapping the criterion.   In 8.1(b) however, the 
sum of the overlaps (1’ + 2’ + 3’) would overestimate the total 
overlap because of the overlap between the predictors themselves.  
In 8.1(b) the amount of the criterion covered will be: 
 
  1’ + (2’ – a – b) + (3’ – b – c - d) 
 
So to obtain total overlap it has been necessary to add 1 + 2 minus 
the overlap of 2 and 1, and 3 minus the overlap of 3 with 1 and 
with 2. 
 
 
In effect we have partialled out the effects of 2 from 1;  and of 1 and 
2 from 3.  If in the above argument we replace ‘overlap’ by 
‘proportion of variance accounted for’ then in 8.1(a) 
 
(1) overlap 1’ will equal r01

2  
 
(2) overlap 2’ will equal r02

2  
 
(3) overlap 3’ will equal r03

2  
 
Total overlap will equal the sum of these, i.e. r01

2 + r02
2 + r03

2 , and will 
be equal to the proportion of variance accounted for by the three 
predictors. 
 
 
In the two variable case it will be recalled that the proportion of 
variance accounted for equalled the coefficient of determination-
rxy

2 -and the square root of this coefficient of determination was the 
correlation coefficient rxy .  In the present situation we have a 
proportion of variance accounted for by a number of predictors, 
which is the coefficient of multiple determination – symbolised in 
this case as R0.123

2 .   Note the use of a capital R as opposed to a small 
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r in the bivariate case, and the subscripts.  In the subscripts the 
criterion variable appears before the dot and the predictor 
variables after it.  As in the bivariate case the square root of the 
coefficient of determination is a correlation coefficient, so in 8.1(a) 
or any case where the predictor variables are uncorrelated the 
multiple correlation coefficient will be: 
 
 
  R0.12...n = r01

2 + r02
2 + ...r0n

2      (8:2) 
 
 
It must be re-emphasized that this is the multiple correlation 
coefficient when the predictor variables are uncorrelated. 
 
 
In 8.1(b) the predictor variables are correlated.  It was, therefore, 
necessary to partial out the overlap and we obtained  
1'+ 2' −a − b( )+ 3' −b − c − d( ),  where a + b was the overlap of 1 and 
2;  and b + c + d was the overlap between 1, 2 and 3.   This is, 
therefore, a part correlation problem, and the proportion of 
variance accounted for will be given by: 
 
 
  R0.12...n = r01

2 + r0 2.1( )
2 + ...r0 n .12... n−1[ ]( )

2    (8:4) 
 
 
Other formulae are available, one of which will be examined later, 
after the weights used in the multiple regression equation have 
been considered. 
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2. The Weights in the Multiple Regression Equation 
 
At this stage it will be useful to recall that in the two variable case 

the weight used with X for prediciting Y from X was rxy

σ y

σ x

; and for 

predicting X from Y was rxy

σ x

σ y

.  These can be seen to be the 

correlation coefficient multiplied by the ratio of the standard 
deviation of the criterion to the standard deviation of the predictor.  
In the multiple regression equation the weights will be analogous 
but because a partialling out has to be done the correlation 
coefficient will be a partial one and the standard deviations will be 
partial ones.  As the derivation of the weights involves more than 
simple algebra it will not be described, but it can be shown that: 
 

(a) b01.2 = r01.2

σ 0.2

σ 1.2

      (8.5) 

 

(b) b01.23 = r01.23

σ 0.23

σ 1.23

 

 

(c) b01.23...n = r01.23...n

σ 0.23...n

σ 1.23...n

 

 
 
It is common practice to economise on subscripts by writing b1   for 
the weight to be attached to variable l, b2   for that attached to 
variable 2 and so on.  If the scores on the predictors are in Z score 
form then β ‘s (betas), are used instead of b’s.  β ‘s and b’s will not 
have the same value but there is a simple relationship between 
them: 
 

(a) β01.2 = b01.2

σ 1

σ 0

      (8:6) 
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(b) b01.2 = β01.2

σ 0

σ 1

 

 

(c) b01.2 = β01.2

σ 0

σ 1

 

 

(d) b01.23...n = β01.23...n

σ 0

σ 1

 

 
As in the case of b’s, β01.23...n is often written simply as β1, and 
similarly other β’s are commonly written as β2, βn, etc. 
 
 
Recalling the formulae for partial correlation coefficients and 
partial standard deviations as described in the last chapter, it will 
be apparent that the computational labour involved in working out 
multiple regression weights is considerable, and best left to a 
computer.  However, to give more concrete practice with multiple 
regression the next section will consider some aspects of multiple 
prediction in the case where there are only two predictors. 
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3. Prediction with Two Predictors 
 
Let us start by examining the prediction of ˆ Z 0 from Z1 and Z 2 . 
The formula will be: 
 
   ˆ Z 0 = β1Z1 + β2Z 2      (8:7) 
 

From (8:6) we know that β1 = b1

σ 1

σ 0

.   This equals 

 

r01.2

σ 0 1− r02
2

σ 1 1− r12
2

. σ 1

σ 0

= r01.2

1− r02
2

1− r12
2

  therefore: 

 

 β1 = r01 − r02r12

1− r02
2 1− r12

2
. 1− r02

2

1− r12
2

     (8:8) 

 
 
Which simplifies to: 
 

   r01 − r02r12

1− r12
2

 

 
Similarly: 
 

β2 = r02 − r01r12

1− r01
2

. 1− r01
2

1− r12
2

= r02 − r01r12

1− r12
2

    (8:9) 

 
 
Note that when r12 equals zero, β1 becomes r01;  and β2 becomes r02.  
This makes (8:7) equal: 
 
 
   Z 0 = r01Z1 + r02Z2 
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Problems 
 
A. Given the following data: 
 
 r01 = .40; r02 = .60; r12 = .71; Z1 = +1.0; Z 2 = −2.0; 
 

What are the values of: 
 
 (1) β1? 
  

(2) β2? 
  

(3) ˆ Z 0?  
 
 
B. If r12 had been equal to zero in problem (a), what would have 

been the values of: 
 
 (1) β1? 
  

(2) β2? 
  
 (3) ˆ Z 0? 
 
Answers 
 
A. (1)   -.05;  (2)  +.63;   (3)   -1.31 
 
B. (1)  .40;   (2)  .60;   (3)  -0.8 
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The derivation of the raw score multiple regression equation from 
the standard ˆ X 0 − M 0 = b1 X1 − M1( )+ b2 X2 − M 2( ) score version is 
fairly simple. 
 
 ˆ X 0 = M 0 − b1M1 − b2M 2 + b1X1 + b2 X2   (8:10) 
 
 
Proof 
 
(1) Given that  Z 0 = β1Z1 + β2Z 2  
 
(2) Changing the Z scores to raw score equivalents gives: 
 

  
ˆ X 0 − M 0

σ 0

= β1

X1 − M1

σ 1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + β2

X2 − M 2

σ 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 
(3) Multiplying both sides by σ 0  gives: 
 

  ˆ X 0 − M 0 = β1

σ 0

σ 1

X1 − M1( )+ β2

σ 0

σ 2

X2 − M 2( ) 

 

(4) But β1

σ 0

σ 1

 and β2

σ 0

σ 2

 have been defined as b1 and b2 

respectively (see (8:6)) so (3) becomes: 
 
(5) Adding M0 to both sides and rearranging gives: 
 
 ˆ X 0 = M 0 − b1M1 − b2M 2 + b1X1 + b2 X2 
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Problem 
 
Given the data in section (a) of the previous example and that 
M 0 =100; M1 =100;  and M 2 = 50 ;  and that 
σ 0 =10; σ 1 = 20; σ 2 =10, what will be the values of: 
 
(1) b1 ? 
 
(2) b2 ?  
 
(3) ˆ X 0 ? 
 
 
Answers 
 

(1) b1 = β1

σ 0

σ 1

= −.05 10
20

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = −.025  

 

(2) b2 = β2

σ 0

σ 2

= .63 10
10

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = .63 

 
(3) M 0 − b1M1 − b2M 2 + b1X1 + b2 X2  
 

=100 − −.025 ×100( )− .63× 50( )+ −.025 ×120( ) 
+ .63× 30( )= 86.9 
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4. The Multiple Correlation Coefficient in Terms of Beta Weights 
 
An alternative formula for the multiple correlation coefficient is: 
 
 
  R0.12...n = β1r01 + β2r02 + ...βnr0n    (8:11) 
 
 
This formula looks very different from the one earlier in the 
chapter which defined the multiple correlation coefficient in terms 
of part correlation, (Formula (8:3)), but in fact the two are the same.  
This will be shown to be true for the case of two predictor 
variables. 
   
 
  β1r01 + β2r02 = r01

2 + r0 2.1( )
2     (8:12) 

 
 
 
 
Proof 
 
(1) β1 =

ro1 − r02r12

1− r12
2 and β2 =

r02 − r01r12

1− r12
2  

 

(2) Therefore β1r01 =
r01

2 − r01r02r12

1− r12
2 and  

β2r02 =
r02

2 − r02r01r12

1− r12
2  

 

(3) Therefore  β1r01 + β2r02 =
r01

2 + r02
2 − 2r01r02r12

1− r12
2  
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(4) By adding and subtracting r01
2 r12

2  to the numerator we 
 obtain: 

 

β1r01 + β2r02 =
r01

2 + r02
2 − 2r01r02r12 + r01

2 r12
2 − r01

2 r12
2

1− r12
2  

 
 
(5) (4) can be split into two parts: 
 

  r01
2 − r01

2 r12
2

1− r12
2 +

r02
2 + r01

2 r12
2 − 2r01r02r12

1− r12
2  

 
 

(6)  r01
2 − r01

2 r12
2

1− r12
2 =

r01
2 1− r12

2( )
1− r12

2 = r01
2  

 
 
(7) So (5) equals: 
 

r01
2 +

r02
2 + r01

2 r12
2 − 2r01r02r12

1− r12
2  

 
(8) However: 
 

r02
2 + r01

2 r12
2 − 2r01r02r12

1− r12
2 =

r02 − r01r12

1− r12
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

 

 
(9) From Formula (7:6): 
 

r02 − r01r12

1− r12
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

= r0 2.1( )
2  

 
(10) Substituting this value in (7) gives: 
 

β1r01 + β2r02 = r01
2 + r0 2.1( )

2  
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5.    The Standard Deviation of the Predicted Scores 
 
The variable ˆ Χ 0  obtained by using a multiple regression equation 
will have a smaller standard deviation than the actual criterion 
variable.  The formula relating these is: 
  ˆ σ 0 = R0.12...nσ 0       (8:13) 
Where: 
 

ˆ σ 0 = standard deviation of the predicted scores, and  
σ 0 = standard deviation of the criterion scores 

 
Proof 
(1) R0.12...n  is the correlation coefficient between predicted and 

 obtained scores, therefore: 
  ˆ x 0 = R0.12...n

ˆ σ 0
σ 0

x0  

 
(2) Translating to Z scores by dividing both sides by ˆ σ 0 and  
 symbolizing R0.12...n  as R, this becomes: 
  ˆ Z 0 = RZ0  
 
(3) Therefore: 

  
ˆ Z 0 − Z 0( )∑
N

2

=
RZ0 − RZ 0( )∑

N

2

 

 
(4) As mean Z scores equal zero (3) becomes: 

  
ˆ Z 0

2∑
N

= R2
Z0

2∑
N

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟  

 
(5) The term on the left is the variance of the ˆ Z 0  Scores, and 
 on the right is the variance of Z0  scores multiplied by R2. 
 Converting to raw scores gives: 
  ˆ σ 0

2 = R2σ 0
2 

 
(6) Therefore 
  ˆ σ 0 = Rσ 0 = R0.12...nσ 0  
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6.    The Interpretation of a Multiple Correlation Coefficient 
 
The multiple correlation coefficient is interpreted in a similar way 
to the ordinary correlation coefficient.  The coefficient of multiple 
determination gives the proportion of variance accounted for. 
 

R0.12...n
2  = coefficient of multiple determination.  (8:14) 

 
 
Also analogous to the bivariate case is the standard error of 
multiple estimate. 
 
 
 σ 0 1− R0.12...n

2 = standard error of multiple estimate.  (8:15) 
 
 
This gives the standard deviation of scores around the regression 
line. 
 
It is also possible to use a coefficient of multiple alienation, or 
multiple non determination. 
 
 
Problems 
 
A. If Test 1 is a test of extraversion and Test 2  WAIS IQ, and the  

correlation between intelligence and extraversion is zero;  
between extraversion and exam marks is -.50;  and between 
IQ and exam marks is + .60:  
 
What are the values of 

 
(1) β1 ? 
 
(2) β2 ? 
 
(3) R0.12 ? 
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B. If student A obtains a score at the 84th percentile for 
extraversion. And a WAIS IQ of 130, what is his predicted Z 
score for exam marks? 

 
C.  Would he do better in examinations than student B whose 

score lies at  the 50th percentile for extraversion, and whose 
IQ is 120? 

 
D. If extraversion and intelligence were correlated -.40, what 

would be the values of: 
 

(1) β1? 
 

(2) β2? 
 

 (3) R0.12? 
 
 
Answers 
 
A. In problem (A)r12 = -.50 
 
  1 = r01 = -.50 
 
  2 = r02 = +.60 
 
  and r0.12 = r01

2 + r02
2 = −50( )2 + .60( )2 = .78 

 
 
B. Z1 =1; Z2 = 2; Z0 = β1Z1 + β2Z2 = −.50 ×1( )+ .60 × 2( )= +.70 
 
 
C. From Answer (B) we know that student A obtains a ˆ Z 0  score 

of +.70.  Student B will obtain a ˆ Z 0  score of 
−.50 × 0( )+ .60 ×1.33( )= + .80. 

 The answer is therefore 'No'. 
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D. (1) β1 =
−.50 − −.40 × .60( )

1− −.40( )2 =
−.26
.84

= −.31 

 

 (2) β2 =
.60 − −.50 × −.40( )

1− −.40( )2
.40
.84

= +.48 

 
 (3) R0.12 = β1r01 + β2r02  
        
        = −.31× −.50( ) + .48 × .60( ) 
 
        .44 = .66  
 
 
 



 
Chapter Nine 

 

Composite scores 
 
1. The Mean of Composite Scores 
 
A composite score is the score which results from summing two or 
more scores.   Composite scores will be symbolised as C. 
 
It can be shown that the mean of a composite equals the sum of the  
means of the components.  Using C  as the mean of the composite 
and  
X 1, X 2, etc. for the means of the components we have: 
 
   C = X 1 + X 2 + ...X n       
 (9:1) 
 
 
 
Proof 
 

(1) C =
C∑

N
 

 
(2) C = X2 + X2 + ...Xn( )∑∑  
 
(3) By Summation Rule 1. (2) is equal to 

X1 + X2∑∑ + ... Xn .∑  
 
(4) Therefore: 
 

    
C∑

N
=

X1∑
N

+
X2∑

N
+ ...

Xn∑
N
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(5) The values on the right are of course means so 
 
    C = X 1 + X 2 + ...X n  
 
Sxy 
Sometimes a composite score is the sum of weighted components.  
For example C might equal 2X1 + 1.5X2 + kX3, the weights being 2 
for X, 1.5 for X2, and k for X3.  Let us symbolise weights as W1, 
W2…Wn, then: 
 
   C = W1X 1 + W2X 2 + ...Wn X n      (9:2) 
 
 
Proof 
 
  (1) C = W1X1 + W2X2 + ...Wn Xn( ) 
 
  (2) C =∑  (using Summation Rule 1) 
    
    W1X1 + W2X2∑ + ... Wn Xn∑  
 

  (3) So 
C∑

N
=

W1X1∑
N

+
W2X2∑
N

+ ...
Wn Xn∑
N

 

 
  (4) So C = W1X 1 + W2X 2 + ...Wn X n  
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2.  The Covariance 
 
Before considering the variance of a composite it will be worth 
recalling the covariance and some computational formulae 
connected with it.  The covariance has been mentioned before in 
the chapter on correlation.  It is defined as the mean of the 
products of subjects’ deviation scores on two tests.  Using Sxy  as 
the symbol for the covariance: 
 

  Sxy =
X − M2( ) Y − My( )∑

N
=

xy∑
N

     (9:3) 

 
It will be recalled that one formula for rxy was: 
 

   rxy =
xy∑

Nσ xσ y

       (9:4) 

 
From this it follows that: 
 
   Sxy =

1
N

xy = rxyσ xσ y∑  

 
That is the mean product of the deviation scores equals the product 
of the correlation coefficient and the two standard deviations.   A 
convenient formula for the covariance is: 
 

   Sxy =
XY∑

N
− Mx My       (9:6) 

 
 
Proof 
  (1) X − Mx( ) Y − My( )= XY + Mx My − MxY − My X  
 
  (2) ( )( ) ∑ ∑∑ ∑ −−++=−− XMYMMNMNMXYMYMX yxyxyx  
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  (3) Dividing by N gives: 
 

   ( )( )
N

X
M

N
Y

MMM
N
XY

N
MYMX

yxyx
yx ∑∑∑∑ −−+=

−−  

 

  (4) But 
Y∑

N
= My; and  

X∑
N

= Mx  

 

   So the right hand term becomes: 
XY∑

N
− Mx My  

 
 
 
3. The Variance of a Composite Score 
 
By now the formula for the variance is familiar, i.e. 
 

   
X − Mx( )2∑

N
 

 
so the formula for the variance of a composite will be: 
 

  σC
2 =

C − C ( )2∑
N

 

          (9:7) 

  = 
X1 + X2 + ...Xn( )− X 1 + X 2 + ...X n( )[ ]∑

N

2

 

 
 
 
The last term can be written in deviation scores: 
 

  σC
2 =

X1 + X2...Xn( )− X 1 + X 2 + ...X n( )[ ]∑
N

2

 

          (9:8) 
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  =
X1 − X 1( )+ X2 − X 2( )+ ... Xn − X n( )[ ]∑

N

2

 

 

  =
x1 + x2 ...xn( )2∑

N
 

 
An easy way to work out all of the values involved in  

x1 + x2 + ...xn( )2   is to prepare a square table thus: 
  
  

 x1 x2 x3 ... xn 
x1      

x2      

x3      

...      
xn      

 
 
The body of the table is formed by multiplying the marginal 
elements. As follows:- 
 
 

 x1 x2 x3 ... xn 
x1 x12 x1x2 x1x3 ... x1xn 

x2 x1x2 x22 x2x3 ... x2xn 

x3 x1x3 x2x3 x32 ... x3xn 

... ... ... ... ... ... 
xn x1xn x2xn x3xn ... xn2 

 
 
 
Thus for each individual we have: 
 
(a)  x1

2 + x2
2 + ...xn

2  and 
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(b)  2x1x2 + 2x1x3 + ...2x n−1( )xn  
 
 
Summing across individuals and dividing by N gives: 
 

x1 + x2 ...xn( )2∑
N

 

          (9:9) 

=
x1

2 + x2
2 + ...xn

2 + 2x1x2 + 2x1x3 + ...2x n−1( )xn( )∑
N

 

 
 

But by definition 
x1

2∑
N

= σ1
2, etc., and 

x1x2∑
N

= covariance 

x1x2 = Sx1x2
, etc.  The variance of a composite is therefore equal to the 

sum of the variances of the components plus twice the sum of all 
possible covariances: 
 

 
( ) nnn xxxxxxxxC SS

1312121
2....2S+ 2... x

2222
−

++++= σσσ  (9:10) 
 
 
But from (9:5) 2Sx1x2

= 2rx1x2σ x1
σ x2

 (9:10) can be written as: 
 

 
( ) ( ) nnnnn xxxxxxxxxxC rr σσσσσσσσ

11212121
2... 2... 222

1
2

−−
++++=  
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If the variables are weighted the variance can again be worked out 
fairly simply by using a square table. 
 
 

 W1x1 W2x2 W3x3 ... Wnxn 
W1x1 W12x12 W1W2x1x2 W1W3x1x3 ... W1Wnx1xn 
W2x2 W1W2x1x2 W22x22 W2W3x2x3 ... W2Wnx2xn 

W3x3 W1W3x1x3 W2W3x2x3 W32 x32 ... W3Wnx3xn 

... ... ... ... ... ... 
Wnxn W1Wnx1xn W2Wnx2xn W3Wnx3xn ... Wn2xn2 

      
      

 
 
The variance of a composite of weighted components will therefore 
be: 
 

( ) ( ) nn

n

xxnn

xxxnxxC

SWW

SWWWWW

1

2121

1

21
2222

2
22

1
2

2...

2...

−−+

+++= σσσσ
  (9:12) 

 
 
For many purposes it is useful to look at the variances of composite 
variables slightly differently.  Such variances are made up of a 
variance for each of n tests and a number of terms of the type 
2rxi x j

σ iσ j .  The sum of the variances will be σ 2∑ . and the mean 

variance will be 
σ 2∑

N
= σ 2.  From this it follows that σ 2∑ = nσ 2.  

Similarly rijσ iσ j = n n −1( )∑ rijσ iσ j , as there are n n −1( ) covariance 
terms.  This number is simply the number of terms in the n× n table 
minus the number of variance terms = n2 − n = n n −1( ).  Hence: 
 
 
  σC

2 = σn 2 + n n −1( )rijσ iσj      (9:13) 
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If the component scores were in Z score form the σ's would 
disappear and in Ζ score terms (9:13) would become: 
 
  σC

2 = n + n n −1( )rij       (9:14) 
 
(formula in terms of Ζ score components). 
 
 
 
4.   Correlation of a Composite Variable with an Outside Variable 
 

Recalling the formula for rxy;rxy =
xy∑

Nσ xσ y

, it can be seen that the 

correlation between a composite variable © and an outside variable 
(0) will be: 
 

  r0C =
x0xC∑

Nσ 0σC

=
x0 x1 + x2 + ...xn( )∑

Nσ 0σC

    (9:15) 

 
This equals: 
 
    

  
x0x1 + x0x2 + ... x0xn∑∑∑

Nσ 0σC

 

 
which in turn equals: 
 

  
1
N

x0x1 + x0x2 ... x0xn∑∑∑( )
σ 0σC

 

 
The terms in the numerator are now all covariance terms and the 
above can therefore be written (following (9:5)), as: 
 
  σ 0σ1r01 + σ 0σ 2r02 + σ 0σ nr0n

σ 0σC
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Dividing by σ0 gives: 
 
  r0C =

σ1r01 + σ 2r02 + ...σ nr0n

σC

     (9:16) 

 
In Z score terms this becomes (finding σC  as the square root of 
(9:13)): 
 

  
r0C = roi∑ nroi

n + n n −1( )rij n + n n −1( )rij

   (9:17) 

 
 
For reasons which will become apparent in a moment it is 
convenient to divide numerator and denominator by n giving: 
 

  r0C = roi roi

n
n2 +

n n −1( )
n2 rij

1
n

+
n −1

n
rij

   (9:18) 

 
 
As n increases in size, i.e. as the number of components increases, 
the value of 1

n
 becomes smaller and smaller, and n −1

n
 becomes 

nearer and nearer to 1.  So with a large number of components, as n 
approaches infinity: 
 

  r0C =
roi

rij

; n → ∞      (9:19) 

 
 
In words the correlation between a composite variable and an 
outside variable is equal to the mean correlation between 
components and the outside variable, divided by the square root of 
the mean intercorrelation between components. 
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5.  Correlation between two Composite Variables 
 
Suppose that CX = X1 + X2 + ...Xn( ) and CY = Y1 + Y2 + ...Yn( ),  
 
And that there are n components in Cx  and m components in CY . 
  

  rCX CY
 will be 

x1 + x2 + ...xn( ) y1 + y2 + ...ym( )∑
NσCX

σCy

 

 
By steps which will by now be familiar this becomes firstly: 
 
 

  
x1y1 + x1y1 + ... xn ym∑∑∑

NσCX
σCY

     (9:20) 

        
In turn this becomes: 
 
  rx1y1

σ x1
σ y1

+ rx1y2
σ x1

σ y2
+ ...rxnym

σ xn
σ ym

σCx
σCy

    (9:21) 

            
As rxi yi

σ xi
σ y i

= nm rxi yi
σ xi

σ yi∑ (9 : 21) becomes : 
 

nm rxi yi
σ xi

σ yi

nσ xi

2 + n n −1( )rxi x j
σ xi

σ x j
mσ yi

2 + m m −1( )ryi y j
σ yi

σ y j

  (9:22) 

 
 
If all components are in Z score form, this becomes: 
 

 nm rxi yi

n + n n −1( )rxi yi
m + m m −1( )ryi y j

     (9:23) 
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Dividing numerator and denominator by nm gives: 
rxi yi

n
n2 +

n n −1( )
n2 rxi x j

m
m2 +

m m −1( )
m2 ryi y j

    (9:24) 

 

      =
rxi yi

1
n

+ n −1
n

rxi x j

1
m

+ m −1
m

ryi y j

 

 
 
As the number of components in each composite becomes larger 
1
n

 and 1
m

 become closer to zero, and n −1
n

 and m −1
m

 become nearer to 

1.  Therefore, as n and m approach infinity we obtain: 
 

  rxi yi

rxi x j
ryi y j

       (9:25) 

 
 
 
Problems 
 
A. Suppose a composite is formed of three tests X1, X2, and X3, 

each with a mean of 10 and a standard deviation of 3.  If 
rx1x2

= .30, rx1x3
= .40, and rx2x3

= .50,        what will be the mean and 
variance of the composite scores? 

 
B. A composite is made up of four tests X1, X2, X3, and X4,    
 with Mx1

= 10, Mx2
= 20, Mx3

= 30, Mx4
= 40 ; and  

 σ x1
= 2,σ x2

= 3,σ x3
= 4, and σ x4

= 5.  If rx1x2
= .20, rx1x3

= .30,  
 rx1x4

= .30, rx2x3
= .40, rx2x4

= .40, and rx3x4
= .20, what is the mean 

of the composite and what is its variance? 
 
C. Given a weighted composite C = 2X1 + 3X2, and r12 = .40;  
 Mx1

=10, and Mx2
= 20; and σ X1

= 5 and σ X 2
= 6 , what is the mean of C 

and what is its variance? 
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D. Given two composites X and Y what will be their correlation 

given the following data on the composites: 
 
  

       X2 Y1 Y2 Y3 M σ 
 X1 .20 .10    .20 .30 10 3 
  X2         .20    .30 .40     15 4 
 Y1        .50 .60 20 5 
 Y2      .40     25 5 
Y3     30 5 

 
 
Use Formula (9:21). 
 
 
Answers 
 
A. C = X 1 + X 2 + X 3 =10 +10 +10 = 30  
 
 σC

2 = σ X1

2 + σ X 2

2 + σ X 3

2 + 2rX1X 2
σ X1

σ X 2
+ 2rX1X 3

σ X1
σ X 3

+2rX 2X 3
σ X 2

σ X 3
 

 
      = 9 + 9 + 9 + 2 .30 × 3× 3( )+ 2 .40 × 3× 3( ) +2 .50 × 3× 3( ) 
 
      = + 48.6. 
 
B. C =10 + 20 + 30 + 40 =100  
 

σC
2 = 4 + 9 +16 + 25 + 2 .20 × 2 × 3( )+ 2 .30 × 2 × 4( ) 

          +2 .30 × 2 × 5( )+ 2 .40 × 3× 4( )+ 2 .40 × 3× 5( )+2 .20 × 4 × 5( ) 
      = 96.8. 
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C. C = W1X 1 + W2X 2 = 2 ×10( )+ 3× 20( )= 80 
 
 σC

2 = W1
2σ X1

2 + W2
2σ X 2

2 + 2W1W2rX1X 2
σ X1

σ X 2
 

 

       
= 4 × 25( )+ 9 × 36( )+ (2 × 2 × 3 × .40 × 5 × 6)

= 568.
 

 
 
 
D.  

           rCxCy
=   

rX1Y1
σ X1

σY1
+ rX1Y2

σ X1
σY2

+ rX1Y3
σ X1

σY3

+rX 2Y1
σ X 2

σY1
+ rX 2Y2

σ X 2
σY2

+ rX 2X 3
σ X 2

σY3

σCX
σCY

 

 
 The numerator =  .10 × 3× 5( )+ .20 × 3 × 5( ) 

    
+ .30 × 3 × 5( )+ .20 × 4 × 5( )
+ .30 × 4 × 5( )+ .40 × 4 × 5( )

 

          =  27.0 
 
 
 The denominator = 
 
 σCX

2 = 9 +16 + 2 .20 × 3× 4( ) = 29.8  
 

 σCY

2 =
25 + 25 + 25 + 2 .50 × 5 × 5( )+ 2 .60 × 5 × 5( )

+ 2 .40 × 5 × 5( )
 

 
  = 150  
 
 
 Therefore rCX CY

=
27.0

29.8 150
= .40 
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6. The Multiple Regression Equation Again 
 
On reflection it will by now be clear that in multiple regression, the 
regression weights combined appropriately with the raw scores or 
Z scores yield weighted composite scores.  These scores when 
correlated with the criterion scores result in the multiple 
correlation coefficient.  Thus R0.12...n , although it  expresses the 
relationship between a number of variables and the criterion, is in 
fact the correlation between only two variables - the weighted 
composite variable and the criterion. 
 
Thus the mean score on the predicted variable and its variance can 
be worked out from the formulae for weighted composites.  It is 
merely necessary to substitute β's or b's for the w's in Formulae 9:2 
and 9:12.  It can be shown that the mean of the composite will 
equal the mean of the criterion. 
 
  ˆ M 0 = M0       (9:26) 
 
Where: 
  ˆ M 0 =   the mean of the predicted scores, and  
  M0 =    the mean of the criterion scores 
 
 
Proof 
 (1) ˆ X 0 = M0 − b1M1 − ...bn Mn + b1X1 + ...bn Xn  
 

 (2) ˆ M 0 =
M0 − b1M1 − ...bn Mn + b1X1 + ...bn Xn( )∑

N
 

 

(3) =
NM0 − b1NM1 − bnNMn + b1 X1 + ...bn Xn∑∑

N
 

 
(4) = M0 − b1M1 − ...bn Mn + b1M1 + ...bn Mn 

 
(5) =  M0  
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The variance of the predicted scores will be: 
 
  ˆ σ 0

2 = bi
2σ i

2 + 2 bib jσ iσ j rij∑∑      (9:27)  
 
Proof 
 
Once more a table will help in working out the products of the 
weighted deviation scores: 
 

 b1x1 b2x2 ... bnxn 

b1x1 b12x12 b1x1b2x2 ... b1x1bnxn 
b2x2 b1x1b2x2 b22x22 ... b2x2bnxn 
... ... ... ... ... 

bnxn b1x1bnxn b2x2bnxn ... bn2xn2 

 
 
 
Summing these values across individuals will give: 
 
(1) ˆ x 0

2 = b1
2 x1

2 + b2
2 x2

2 + ...bn
2 xn

2 + 2b1b2 x1x2∑∑∑∑∑ +...2b n−1( )bn x n−1( )xn∑  
 
 
(2) Dividing by N gives: 
 
 b1

2σ1
2 + b2

2σ 2
2 + ...bn

2σ n
2 + 2b1b2σ1σ 2r12 +...2b n−1( )bnσ n−1( )n  

 
 
(3) This equals: 
 
 bi

2σ i
2 + 2 bib jσ iσ j rij∑∑  
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Problems 
 
A. If r01 = .30, r02 − .40, and r12 = .50, write the Z score regression 

equation for predicting 0 from 1 and 2. 
 
B. What will be the mean of the predicted scores?  (Use the 

formula for the mean of a weighted composite.) 
 
C. What will the variance of the predicted scores be?  (Use the 

formula for the variance of a weighted composite.) 
 
 
 
Answers 
 
A. Z0 = β1Z1 + β2Z2;β1 =

r01 − r02r12

1− r12
2  

 
 and β2 =

r02 − r01r12

1− r12
2  

 

 Therefore β1 =
.30 − .40 × .50( )

1− .502 = .13 

 

          β2 =
.40 − .30 × .50( )

1− .502 = .33 

 
 Therefore Z0 = .13Z1 + .33Z2 
 
 
B. ˆ M Z 0

= .13MZ1
+ .33MZ 2

= 0 
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C. (1)  A square table will help: 
 
   

 β1Z1 β2Z2 

β1Z1 β1
2Z1

2 β1β2Z1Z2 

β2Z2 β2β1Z2Z1 β2
2Z2

2 

 
 
 (2)   Summing across individuals and dividing by N gives: 
 

  ˆ σ Z 0

2 = β1
2

Z1
2∑

N
+ β2

2
Z2

2∑
N

+ 2β1β2

Z1Z2∑
N

 

 
 

(3)  As 
Z1

2∑
N

 and 
Z2

2∑
N

 equal 1; and as 
Z1Z2∑
N

 equals r12 we  

      obtain: 
 
 (4)   ˆ σ Z 0

2 = β1
2 + β2

2 + 2β1β2r12 
  
         = .132 + .332 + 2 × .13 × .33 × .50( ) 
 
         = .17 
 
 (5)   Therefore ˆ σ Z 0

= .41. 
 
According to (8:13) ˆ σ 0 = R0.12σ 0.   
 
Does this agree with the answer just obtained? 



Chapter Ten 
 

Item statistics 
 
1. The Mean of Dichotomous Item 
 
In this chapter we will be concerned with dichotomous items, i.e. 
items cored either 1 or 0.  Such items might be individual items in 
an intelligence test, or questions on a personality inventory.  As 
the formula for the mean is X /N∑ , and as dichotomous items, 
(hereafter called simply 'items'), are only scored 1 or 0. 
 

  M =
X∑

N
=

1's + 0's∑∑
N

=
1's∑

N
    (10:1) 

 
However by Summation Rule 2 the sum of a constant taken n 
times is n times that constant, so (10:1) becomes, as the constant is 
1, 
 
    M item( ) =

n
N

     (10:2) 

 
So the mean of a dichotomous item is the number of cases scoring 
1 divided by the total number of cases.  Further the number of 
cases scoring 1 divided by the total number of cases equals the 
proportion of cases scoring 1.   Hence, using 'p' as the symbol for a 
proportion: 
 
    M item( ) =

n
N

= p     (10:3) 

 
It will be convenient to also have a symbol for the proportion not 
passing an item, and this we will call 'q'.  Because the total 
proportion must be 1, (10:4) is obtained. 
 
    q =1− p     (10:4) 
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Problems 
 
A.    If 10 out of 50 subjects pass an item, what is mean score for 

that item? 
 
B.     If 19 out of 25 subjects score 1 on a dichotomous item what is 

its mean? 
 
C.    What is the value of q in (A) and in (B)? 
 
 
 
Answers 
 
A.   20;  
 
B.   .76;  
 
C. (A) = .80, (B) = .24. 
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2. The Variance of a Dichotomous Item 
 
Amongst the formulae for the variance described earlier was 

2 : 7( ),σ 2 =
X 2∑

N
− M 2 .  In the case where all the X's are 1's or 0's,  

X∑  will also equal n. 
 
  X item( ) = X item( )

2∑ = n∑      (10:5) 
 
 
Substituting these values in formula (2:7) for the variance and  
using (10:3) gives 
 

  σ item( )
2 =

n
N

−
n
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

= p − p2      (10:6) 

 
 
This can be written as: 
 
  σ item( )

2 = p − p2 = p 1− p( )= pq .    (10:7) 
  (from (10:4) 1 - p = q). 
 
 
Thus the variance of an item is pq. 
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Problems 
 
A.   If 20 out of 50 people pass an item what is its variance? 
 
B.    If 60 out of 200 people score 1 on a dichotomous item what is 
its variance? 
 
C.   What is the maximum variance that an item can have? 
 
 
Answers 
 
A.  .24;  
 
B.  .21;   
 
C. .25;  i.e. when p = q = .50.  (If in doubt prepare a table with 
values of p of .10, .20, .30, .40, .50, .60, .70, .80, .90 and work out the 
value of pq). 
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3.   The Covariance of Items 
 
It will be recalled that one formula for the covariance is 
 

  Sxy =
XY∑

N
− Mx My       (9:6) 

 
Letting two items be called I and J. MiMj becomes pipj (using 
(10:3)).  To work out the value of IJ∑  consider the following table.  
 
       Item J 

     0    1 
Item    0    0    0 
   1    1    0    1 

 
 
In the body of the table are the products of all possible pairs of 
scores on the two items.  Only in the case where the individual 
passes both items will the product of his item scores have a non-
zero value.  So the value of IJ∑  in terms of items will equal the 

number of subjects passing both items, and 
IJ∑

N
 will be the 

proportion of subjects passing both items.  The symbol used for 
the proportion passing both items will be Pij , so the formula for the 
covariance of items is: 
 
 
   Sij = pij − pi p j       (10:8) 
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Problems 
 
If, in a group of 50 subjects 20 pass item X and 40 pass item Y, and 
18 pass items X and Y, 
 
A.   What is the mean for item X? 
 
B.   What is the mean for item Y? 
 
C.   What is the variance of item X? 
 
D.   What is the variance of item Y? 
 
E.   What is the covariance of items X and Y? 
 
 
 
Answers 
 
A.  .40;  
 
B.   .80;  
 
C.  .24;  
 
D.  .16;  
 
E.   .04. 
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4.   The Mean of a Combination of Items 
 
A composite variable composed of m items will have a mean equal 
to: 
 
   C item( ) = p1 + p2 + p3 + ...pm    (10:9)  
 
 
where p1p2...pm  are the proportions passing items 1, 2 and m. 
 
 
 
 
Proof 
 

(1) C item( ) =
C item( )∑
N

 

 

(2) 
C item( )∑
N

=
n1 + n2 + n3 + ...nm

N
 

 
(3) =

n1

N
+

n2

N
+

n3

N
+ ... nm

N
 

 
(4) = p1 + p2 + p3 + ...pm  
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5.  The Variance of a Combination of Items 
 
In Chapter 9 it was shown that the variance of a composite is equal 
to 
 
  σ i

2∑ + n n −1( )rijσ iσ j  
 

Further from (9:5) it is known that rijσ iσ j  equals 
ij∑

N
 giving 

 

  σC
2 = σ1

2∑ + n n −1( )
ij∑

N
     (10:10) 

 
In terms of dichotomous items σ 2 = pq;  and Sij = pij − pi p j , so (10:10) 
becomes 
 
  σC

2 = piqi + n n −1( ) pij − pi p j( )∑     (10:11) 
 
 or       σC

2 = piqi + 2 pij − pi p j( )∑∑     (10:12) 
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Problems 
 
Given the following data: 
 
      Item 
 

Subject A B C Y 
1 1 0 1 1 
 2 0 0 1 2 
 3 1 0 1 3 
 4 0 0 1 4 
 5 1 0 1 5 
 6 0 1 1 1 
 7 1 1 1 2 
 8 0 1 1 3 
 9 1 1 1 4 
10 0 1 1 5 

 
 
   
 A. What are the means of items A, B and C? 
 
 B. What are the variances of items A, B and C? 
 
C. What are the values of covariance AB, covariance AC and 

covariance BC? 
 
D. What is the mean of the composite (A + B + C)? 
 
E. What is the variance of the composite (A + B + C)? 
 
F. What are the variances of the composites (A + B), (A + C), 

and (B+C)? 
 
G. Check your answers by forming the appropriate composites. 
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Answers 
 
A. The mean of an item is n

N
= p. 

 
   A = .50; B = .50; C =1.0. 
 
B. The variance of an item is pq.  
 
   σ a

2 = .25; σ b
2 = .25; σ c

2 = 0. 
 
C. Sab = .20 − .50 × .50( )= −.50; Sc

a = .50 − 1.0 × .50( )= 0 
 Sbc = .50 − 1.0 × x.50( )= 0. 
 
 
D. C = A + B + C = 2.0  
 
 
E. σ c

2 = σ a
2 + σ b

2 + σ c
2 + 2 Sab + Sac + Sbc( ) 

     = .25 + .25 + 0 + 2 −.05 + 0 + 0( )= .40 
 
 
F. 

 
σ ab

2 = σ a
2 + σ b

2 + 2sab = .50 + 2 −.05( )= .40

σ ac
2 = σ a

2 + σ c
2 + 2sac = .50 + 0 + 0 = .25

σ bc
2 = σ b

2 + σ c
2 + 2sbc = .50 + 0 + 0 = .25
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6. The Correlation between One Dichotomous Item and Another 
 
One formula for the product moment correlation coefficient is: 
 
The covariance divided by the product of the standard deviation 
of the two variables, i.e. 
 

   rxy =
xy /N∑

σ xσ y

     (10:13) 

 
 
In terms of items this becomes: 
 
   rij =

pij − pi p j

piqi p jq j

    (10:14) 

 
 
This is the formula for the Phi Coefficient.  For computational 
purposes a slightly different formula is used.  Consider the 
following table: 
 
 
 
     Item J 

       1  0 

    

       1  a + b  

 Item I   

     0  c + d     
             a + c         b + d   N 

 

The covariance will equal; 

 

   a
N

−
a + b

N
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

a + c
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  

   a               b 
 
 
   c               d 
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The variance of I will equal: 

   a + b
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

c + d
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  

 

and its square root will equal the standard deviation of I. 

   a + c
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

b + d
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  

 

So the formula becomes: 

 
a
N

−
a + b

N
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

a + c
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

a + b
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

c + d
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

a + c
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

b + d
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

 

 

which can be simplified to: 

 ad − bc
a + b( ) c + d( ) a + b( ) b + d( )

      (10:15) 

 
 
Proof 

1=

a
N

−
a + b( ) a + c( )

N 2

a + b( ) c + d( )
N 2

a + c( ) b + d( )
N 2

     (10:16) 

 
 
(2) The denominator can be transformed by taking N2 from 
under the root sign to:  
 

 

1
N

a + b( ) c + d( ). 1
N

a + c( ) b + d( )

=
1

N 2 a + c( ) c + d( ) a + c( ) b + d( )  
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(3) Multiplying numerator and denominator by N2 gives 
 

  Na − a + b( ) a + c( )
a + c( ) c + d( ) a + c( ) b + d( )

 

 
 
(4) As N = a + b + c + d the numerator can be simplified to: 
 
  a a + b + c + d( )− a + b( ) a + c( ) 
 
 
(5) Multiplying appropriately this becomes: 
 
  a2 + ab + ac + ad − a2 − ac − ab − bc  
 
 
(6) which equals ad − bc  
 
 
(7) Thus: 
 
  rij =

ad − bc
a + c( ) c + d( ) a + c( ) b + d( )
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7.   The Correlation between a Dichotomous Item and a Continuous 
Variable 

 
Again using formula (10:13) and substituting (9:6) for the 
covariance, it is possible to work out the product moment 
correlation between a dichotomous item and a continuous 
variable.  In this case the covariance will consist of the mean of 
scores on the continuous variable of those who obtained a score of 
1 on the dichotomous item.   For those who scored 0 on the item 
the product of the item and variable score will of course be zero.   
Where I is the item and Y the continuous variable: 
 

  rij =
Y 1( ) /N − piMy∑
σ y piqi

     (10:17) 

 
Where Y(1)∑  is the sum of Y scores for those scoring 1 on the item 
and pi = Mi    and  piqi = σ i  
 
 
(10:17) is called the Point-Biserial Coefficient.  Its value is worked 
out as follows: 
 
Step 1. Find the sum of Y scores for subjects scoring 1 on the 

item. 
 
Step 2. Divide the value found in Step 1 by N. 
 
Step 3. Find Mi and y. 
 
Step 4. Find the product MiMy. 
 
Step 5. Subtract the value in Step 4 from the value in Step 2. 
 
Step 6. Find σ i and σ y . 
 
Step 7. Find the product σ iσ y . 
 
Step 8. Divide the value found in Step 5 by the value found in 

Step 7. 
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Problems 
 
Given the data in the problems at the end of Section 10:5: 
 
A. What are the values of: 
 
 (1) rab ? 
 (2) rac ? 
 (3) rbc ? 
 
B. What are the values of: 
 
 (1) ray ? 
 (2) rby ? 
 (3) rcy ? 
 
 
 
 
Answers 
 
A. (1)  - .20;   

(2)     .00;   
(3)     .00. 

 
B. (1)     .00;   

(2)     .00;   
(3)     .00. 

 



 
Chapter Eleven 

 

Reliability 
 
1. Introduction 
 
Psychological measurement is more prone to error than physical 
measurement, and reliability is best defined in terms of error.  
When a measurement contains much error it is said to have low 
reliability, or to be unreliable, while if it contains little error it is 
said to be reliable or to have high reliability.  Because of the 
susceptibility to error of psychological measurements, 
psychologists have always been interested in developing theories 
of measurement error.   The present chapter aims to  introduce the 
reader to some of the theory of reliability and to the various ways 
of assessing the reliability of a measuring device.  At this stage it is 
desirable not to be too specific about the definition of error.   A 
classification of different types of error will be presented later, but 
for present purposes 'error' is best left as an abstract term. 
 
As far as theory is concerned, the two theories of measurement 
error discussed will be: 
 
(a)  the theory of parallel tests and true and error scores, 
 
(b)  the theory of domain sampling. 
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2.  Parallel Tests, True Scores, and Error Scores 
 
Basic to the theory of true scores and error scores is the assumption 
that an obtained score is made up of two components: 
 
(a)  the individual's true score 
 
(b)  the individual's error score, which can be positive or 
       negative. 
 
 
This can be written as an equation. 
 
  X = T + E       (11:1) 
 
Where X = the obtained score 
             T = the true score 
             E = the error score   
 
An individual's true score can be conceptualized in this theory as 
almost a metaphysical platonic idea.  It is the individual's real 
score.  Suppose someone was tested on an intelligence test, it might 
well be asked whether the result represented his real intelligence.  
Anyone asking such a question is implicitly accepting the notion of 
a true score as a real characteristic of an individual.  Other 
conceptions of true score are possible and in some ways preferable, 
but for introductory purposes the notion of platonic true scores is 
easier to deal with and a grasp of measurement theory using 
platonic true scores is easily transferred to other theoretical models. 
  
A number of further assumptions are also made: 
 
Assumption 1: the action of error is completely random. 
 
Assumption 2: the mean error score is zero. 
 
Assumption 3: the variance of error scores is the same on all tests  
   of a given length. 
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Assumption 4: the correlations between error scores and: 
 
   (a) true scores 
   (b) other error scores, 
 
   are zero. 
 
Any of these really follow from assuming that error will be random 
in its effects.  For example random effects would be just as likely to 
increase as to decrease a score, therefore Assumption 2 is 
reasonable.  If error is random it is reasonable to assume that error 
variance on different tests will be the same and so on. 
 
Now suppose that there are a number of tests of a given length 
which measure the same trait or traits to the same degree.  Such 
tests are called parallel tests.  Given a number of such tests it is 
possible to deduce certain of their properties. 
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3. The Means of Parallel Tests 
 
Firstly the mean score on any of the tests given to a large number 
of individuals will be the mean of the true scores: 
 
   M1 = M2 = ...Mn = T     (11:2) 
 
Where M1, M2, and Mn  are the means of tests 1,2, and n respectively 
and T  equals the mean true score. 
 
 
 
Proof 
 

(1) M1 =
X1∑

N
 

 

(2) 
X1∑

N
=

T + E( )∑
N

 

 

(3) 
T + E( )∑
N

=
T∑

N
+

E∑
N

 

 

(4) 
T∑

N
+

E∑
N

= T + E  

 
(5) By Assumption 2 above E = 0.  So  
 
   M1 = T + E = T  
 This is true of any parallel test, so: 
 
(6) M1 = M2 = ...Mn = T . 
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4. The Variances of Parallel Tests 
 
A second deduction is that the variances of the tests will be equal, 
but before proving this it will be shown that 
 
   x = t + e      (11:3) 
 
where x = X − M  
   t = T − T  
   e = E − E  
 
Proof 
 
(1) x = X − M  
 

(2) X − M = T + E( )−
T + E( )∑
N

 

 

(3) T + E( )−
T + E( )∑
N

= T + E( )− T + E ( ) 
 
(4) T + E( )− T + E ( )= T − T ( )+ E − E ( ) 
 
(5) But T − T = t and E − E = e 
 
 So 
   x = t + e  
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It will now be fairly easy to show that the variances of the tests will 
equal one another. 
 
  σ i

2 = σ1
2 = σ 2

2 = ...σ n
2      (11:4) 

 
Proof 
 

(1) σ i
2 =

x 2∑
N

 

 

(2) 
x 2∑

N
=

t + e( )2∑
N

using 11.3( )( ) 
 

(3) 
t + e( )2∑
N

=
t 2 + e2 + 2et( )∑

N
 

 

(4) =
t 2∑

N
+

e2∑
N

+ 2
et∑

N
 

 

(5) But    
et∑

N
is a covariance and equals retσ eσ t

x 2∑
N

=
t + e( )2∑
N

  

  
By Assumption 4 ret = 0  s0 (3) becomes: 
 

  
t + e( )2∑
N

= σ t
2 +σ e

2  

 
(6) By Assumption 3, σ e

2  is the same for all tests, and the  
 variance of true scores must always be the same, so 
 
  σ i

2 = σ t
2 + σ e

2 = σ1
2 = σ 2

2 = σ n
2 
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5. The Intercorrelation of Parallel Tests 
 
So far it has been shown that parallel tests have the same mean and 
the same variance.  It will now be shown that the correlation 
between any two parallel tests equals the correlation between any 
other two. 
 
   rij = r12 = r13 = ...rn−1( )n    (11:5) 
 
Proof 
 

(1) rij =
xix j∑

Nσ iσ j

=
t + ei( ) t + e j( )∑

Nσ iσ j

 

 

(3) 
t 2 + eie j + eit + e j t∑∑∑∑

Nσ iσ j

 

 
(4) Dividing numerator and denominator by N gives: 
 

  
t 2 N + ei e j N + ei t N + e j t N∑∑∑∑

σ iσ j

 

 
(5)  The numerator consists of a variance term and a number of 
       covariance terms so:  (4) becomes 
 

  
σ t

2 + rei e j
σ ei

σ e j
+ rei tσ t + re j tσ e j

σ t

σ iσ j
 

 
(6)  The last three terms in the numerator equal zero, and it has 
       been shown in (11:4) that σ i = σ j  so: 
 

  rij =
σ t

2

σ 2  
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6. The Reliability Coefficient 
 
The correlation between any two parallel tests is equal to the 
proportion of variance which is true variance.  The value obtained 
by correlating two parallel tests is called the reliability coefficient, 
symbolised as rxx . 
 

 rxx =
σ t

2

σ x
2  = reliability coefficient of test X  (11:6) 

 
Below are listed some other equations involving rxx .  In deriving 
these it is helpful to recall from (11:4), Step 5, that: σ x

2 = σ t
2 +σ e

2  
 
 

rxxσ x
2 =σ t

2
       (11:7) 

 
(11:7) is obtained from (11:6) by multiplying both sides by σ x

2.  To 
obtain the variance of true scores it is necessary to multiply the 
variance of obtained scores by the reliability coefficient.  In practice 
rxx  is always less than 1.0 so σ t

2 is always less than 1.0 so σ t
2 will be 

less than σ x
2. 

 

  rxx =1−
σ e

2

σ x
2        (11:8) 

 
Proof 
 

(1) rxx =
σ t

2

σ x
2  and 

 
(2) σ x

2 = σ t
2 + σ e

2  so 
 
(3) σ x

2 −σ e
2 = σ t

2 so 
 

(4) rxx =
σ x

2 −σ e
2

σ x
2 =1−

σ e
2

σ x
2  
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The variance of error scores is also derivable quite easily and this is 
of great value for a number of purposes. 
 

  σ e
2 = σ x

2 1− rxx( )     (11:9) 
 
Proof 
 

(1) rxx =1−
σ e

2

σ x
2  

 

(2) rxx +
σ e

2

σ x
2 = 1 

 

(3) 
σ e

2

σ x
2 =1− rxx  

 
 
(4) (Multiplying both sides by σ x

2) 
 

   σ e
2 = σ x

2 1− rxx( ) 
 
The square root of this value is called the standard error of 
measurement, and it represents the standard deviation of the 
distribution of obtained scores about true scores.  This will be 
discussed in more detail later. 
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7. The Correlation of Parallel Tests with an Outside Variable 
 
Another feature of parallel tests is that the correlation of any one of 
them with an outside variable is the same as the correlation of any 
other with the outside variable. 
 
Calling the parallel tests X1, X2,...Xn  and the outside variable Y: 
    

   rxi y
= rx1y = ...rxny     (11:10) 

 
Proof 
 

(1) rxi y =
xiy∑

Nσ xi
σ y

 

 

(2) 
xiy∑

Nσ xi
σ y

=
t + e( )∑ y

Nσ xi
σ y

 

 

(3) So rxi y =
ty + ey∑∑
Nσ xi

σ y

 

 
(4) Dividing numerator and denominator by N gives:  
 

   
ty N + ey N∑∑

σ xi
σ y

 

 
(5) ey N = reyσ eσ y = 0∑     and    ty N = rtyσ tσ y∑  
     

So:  rxi y =
rtyσ tσ y

σ xi
σ y

 

(6) Dividing numerator and denominator by σ y  gives: 
 

   rxi y =
rtyσ t

σ xi

= rty
σ t

σ xi

 

 

(7)   
σ t

σ xi

=
σ t

2

σ xi

2 = rxx  
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(8) Therefore rxi y = rty rxx  
 
Because the true scores are the same on all parallel tests rty  will be 
the same for all tests and rxx  is the reliability coefficient, therefore 
the correlation between any parallel test and an outside criterion 
will be found by: 
 

   rxi y = rty rxx      (11:11) 
 
A brief summary may be useful at this point: 
 
(1) Parallel tests have: 
 
 (a) the same mean 
 (b) the same variance 
 (c) the same correlation between any pair of them 
 (d) the same correlation with an outside variable. 
 
 
(2) Two useful measures of reliability are: 
  

(a) the reliability coefficient rxx  which is the ratio of true 
  variance to total variance: and  

(b) the standard error of measurement which is the 
Standard deviation of the distribution of obtained 
scores about true scores. 

 
It will have been noted that rxx , the reliability coefficient, is equal to 
the proportion of variance in obtained scores accountable for by 
true scores.  It is therefore a coefficient of determination.  The 
square root will be the correlation between true and obtained 
scores, and is called the index of reliability.  
 

   rxi t
=

σ t
2

σ x
2 = rxx     (11:12) 

Again it is emphasised that the reliability coefficient rxx  is not the 
correlation between true and obtained scores. 
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8. The Length of Parallel Tests and Reliability 
 
Finally, the relationship between the length of the parallel tests and 
its effect on the reliability coefficient is worth examining.  Suppose 
that a parallel test is doubled in length by adding to it another 
parallel test.   The combination, being a parallel composite of two 
tests, is now correlated with another parallel composite of two 
tests.  So in all there are four parallel tests arranged in two pairs.  If 
one parallel composite Cx is made up of tests Y1 and Y2. 
 

 rCxCy
=

2rxx

1+ rxx

=  reliability of a test
double in length

    (11:13) 

 

Proof 

(1)    rCxCy
=

x1 + x2( ) y1 + y2( )∑

N
x1 + x2( )2∑

N
y1 + y2( )2∑

N

 

 

(2)     =
x1y1 + x1y2 + x2y1 + x2y2∑∑∑∑

N
x1

2 + x2
2 + 2x1x2( )∑

N
y1

2 + y2
2 + 2y1y2( )∑

N

 

      
(3)   Dividing numerator and denominator by N and remembering  

        that 
xy∑

N
= rxyσ xσ y gives 

 
       rx1y1

σ x1
σ y1

+ rx1y2
σ x1

σ y2
+ rx2y2

σ x2
σ y1

+ rx2y2
σ x2

σ y2

σ x1

2 + σ x2

2 + 2rx1x2
σ x1

σ x1
σ y1

2 + σ y2

2 + 2ry1y2
σ y1

σ y2

 

 
(4)   But the components X1, X2, Y1, Y2  are all parallel tests to be equal 
        ((11:4) and (11:5)); so (3) becomes: 
 

    rxxσ x
2 + rxxσ x

2 + rxxσ x
2 + rxxσ x

2

σ x
2 + σ x

2 + 2rxxσ x
2  
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(5)   Dividing numerator and denominator by σ x
2 gives: 

 
    4rxx

2 + 2rxx

 

 
(6)   Dividing by 2 gives: 
 
    2rxx

1+ rxx

 

 
If there had been parallel composites consisting of four 
components then in step (4) above there would have been 16 terms 
in the numerator of the type rxxσ x

2, 4  variance terms in the 
denominator, and 12 = n n −1( ) covariance terms also in the 
denominator.  (If this is not clear use the tabular method suggested 
in Chapter 9 for working out the variance of a composite.)  So in 
the case of a test 4 times as long: 
 

   rCxCy
=

4rxx

1+ 3rxx
     (11:14) 

 
If the test had been k times as long there would have been k2 terms 
of the type rxxσ x

2 in the numerator, and the denominator would have 
also consisted of k2 terms, k of which would have been variances 
and k(k - 1) of which would have been covariances.  So a general 
formula for the reliability of a test lengthened k times is: 
 
   rcx cy

=
krxx

1+ k − r( )rxx

     (11:15) 

 
This formula is called the Spearman-Brown formula, and it will be 
reached by a slightly different route in a later section in connection 
with the theory of domain sampling, which will now be discussed. 
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9. The Domain Sampling Model 
 
In the domain sampling model a test is thought of as being a 
random sample of all possible items relevant to the characteristic 
which the test measures.  This universe of all possible items from 
which the sample is drawn is called a domain.  In terms of this 
model an individual's true score is the score he would get if all 
items in the domain were administered to him. 
 
The model makes a major assumption, which is that the average 
intercorrelation of an item with all other items is the same for all 
items.  As the number of items in a domain tends to be infinitely 
large this does not seem an unreasonable assumption.  Supposing 
that there are n items in the domain the correlation matrix for the 
correlations between items can be represented thus: 
 
 
    1  2 . . .  n 
 
        
 Item      1  r11  r12 . . .  r1n   
 
       2  r21  r22 . . .  r2n 
 
       .  .  . . . .  . 
       .  .   . . . .  . 
       .  .  . . . .  . 
          n  rn1  rn2 . . .  rnn 
 
 
 
 
The assumption states that the sum of any row in the matrix is 
equal to the sum of any other row, and also equal to the sum of any 
column.  Dividing either a row or column total by n will give the 
mean intercorrelation between a given item and all other items.  
Because the mean intercorrelation of an item with all other items is 
the same for any item, it follows that the mean intercorrelation of 
all of the items in the domain, will also be equal to the mean 
correlation of an item with all others. 
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These assumptions can be stated as follows: 
 

  r1 j = r2 j = ...rnj = rij    (11:16) 
 
Where  r1 j  =  the average correlation of the first item with other 
     items. 
    r2 j  =    the average correlation of the second item with  
     other items. 
    r1 j  =   the mean correlation between items for the whole 
     matrix. 
 
 
To prove that r1 j , etc = r1 j  let R stand for the sum of any row in the 
matrix. 
 

(1) r1 j =
R1

n
; r2 j =

R2

n
; rnj =

Rn

n  

 
(2) Summing the row totals gives the grand total 
 

  R = R1 + R2 + ... Rn∑  
 
(3) But by assumption R1 = R2 = ...Rn so Rn  is constant, therefore: 
 
  R = nR∑  
 
(4) To obtain the mean correlation for the whole matrix the  
 grand total needs to be divided by the total number of 
 correlations in the matrix, i.e. n2, therefore:: 
 
   rij =

nR
n2 =

R
n

 

 
 So the mean of all correlations equals the mean of the  
 correlation of any item with all other items. 
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10.  The Correlation of an Item with the True Score 
 
In some of the following derivations it is necessary to recall that 

xy∑
Nσ xσ y

=
ZxZy∑

N(1)(1)
;  and further that if the items making up a  

composite are in Z score form: 
 

(a) Z c = 0   
 

(b) Z1 + Z2 + ...Zn( )− Zc = Z1 + Z2 + ...Zn( ) 
 

(c) σ Zc

2 =
Z1 + Z2 + ...Zn( )2∑

N
 

 
Bearing the above in mind it can be shown that the correlation 
between an item and the true score is: 
 
 

   r1t = r1 j = rit      (11:17) 
 
 
Proof 
 

(1) r1t =
Z1 Z1 + Z2 + ...Zn( )∑

N 1( ) Z1 + Z2 + ...Zn( )
N

 

 

(2) = 
Z1

2∑ + Z1∑ Z2 + ... Z1Zn∑

N
Z1

2∑
N

+
Z2

2∑
N

+
Zn

2∑
N

+ 2
Z1Z2∑
N

+ 2
Z1Z3∑
N

+ ...2
Z n−1( )Zn∑

N

 

 
 

(3) As 
Z 2∑

N
= σ z

2 =1, and 
Z1Z j∑
N

= r1 j 2( ) becomes: 

 

  1+ r12 + ...r1n

n + n n −1( )rij

=
1+ n −1( )r1 j

n + n n −1( )rij
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(4) Squaring and recalling that r1 j = rij  (from (11:16)), 
 

  r1t
2 =

1+ n −1( )2 rij
2 + 2 n −1( )rij

n + n n −1( )rij

 

 
(5) Dividing numerator and denominator by n2 gives: 
 

  r1t
2 =

1
n2 +

n −1( )2

n2 rij
2 +

2 n −1( )
n2 rij

1
n

+
n n −1( )

n2 rij

 

 
(6) As n = the number of items in the domain, n is infinitely 
 large: 
 

(a) Values divided by n become infinitely small and  
 

 (b) n −1( )
n

  is virtually equal to 1.  (5) thus becomes: 

 

   r1t
2 =

rij
2

rij

= rij  

 
(7) Therefore: 
 

   r1t = rij  
 
The proportion of variance in an item accounted for by the 
correlation of an item with the true score will be r1t

2 = rij , as the total 
proportion of variance of the item will be 1.0, the proportion of true 
variance equals rij , thus the reliability coefficient of an item equals 
rij .   Symbolising the reliability of an item as rii: 
 

   rii = rij       (11:18) 
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11. The Correlation of a k-item Test with the True Score 
 
The correlation between a test made up of k items and the true 
score can be shown to be: 

   rkt =
kr it

k + k k −1( )rij
    (11:19) 

 
Proof 
 

(1) rkt =
Z1 Z1 + Z2 + ...Zk( )∑

N 1( )
Z1 + Z2 + ...Zk( )2∑

N

 

 
(2) =

rt1 + rt 2 + ...rtk

k + k k −1( )rij

 

 
     (It has been assumed that the average intercorrelation in 
 k x k  matrix will be the same as that in the n x n matrix. 
 If k is reasonably large, and the items are a random  
 sample from the domain this is a reasonable assumption.) 
 
(3) So: 

   rkt =
krit

k + k k −1( )rij

 

 
 It also follows that: 

(4) Squaring and recalling that rit = rij   gives: 
 

   rkt
2 =

k2 rij

k + k k −1( )rij
 

 
 
(5) Dividing numerator and denominator by k gives: 
 

   rkt
2 =

krij

1+ k −1( )rij
 



Philip Ley. Quantitative Aspects of Psychological Assessment                        157 

© 1972, 2007 Philip Ley Text re-typed for computer by Irene Page 
 

This last value on the left is the squared correlation between a k 
item test and true scores and is the reliability coefficient of a k item 
test, which, as in the section on parallel tests, can be symbolised rxx , 
so: 

  rxx =
krij

1+ k −1( )rij

=
krii

1+ k −1( )rii
    (11:20) 

 
The proportion of variance accounted for by the correlation with 
true scores will equal rxx , and the residual error variance will be 
1− rxx , and the standard error of measurement will be, as before, 
σ x 1− rxx . 
 
At this stage it should be noted that all of the above conclusions 
would have followed if instead of items, different sets of items 
randomly sampled from the domain had been used.  These random 
sets would be the domain sampling equivalent of parallel tests, and 
are called randomly parallel tests, or randomly parallel composites.  
In the proofs, Z scores on tests would need to be substituted for Z 
scores on items. 
 
Looking again at (11:20) which gives the reliability of a k item test, 
it will be seen that it is the item equivalent of (11:15).  It is the 
Spearman-Brown formula. 
 
Problems 
 
A. Given a test consisting of k items with a reliability of .80,  
 what would its reliability be if it was: 
 
 (1) doubled in length? 
 (2) lengthened tenfold? 
 
B. (1) What would be the reliability of a test made up of all 
  seven items with an average intercorrelation between 
  items of .20? 
 (2) If the mean intercorrelation between items was .30, 
  what would be the reliability of a 10 item test? 
 (3) If there were 50 items whose mean intercorrelation was 
  .10, what would the reliability coefficient be? 
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Answers 
 
A. (1) The Spearman-Brown formula states: 
 
   rcxcy =

rxx

1+ k −1( )rxx

 

 
  Substituting 2 for k and .80 for rxx  gives: 
 
   rcxcy =

2 × .80
1+ .80

= .89  

 
 (2) Substituting 10 for k and .80 for rxx gives: 
 
   rcxcy =

10 × .80
1+ 9 × .80( )

= .98  

 
B. (1) Substituting .20 for rij  and 7 for k in (11:19) gives: 
 
   rxx =

7 × .20
1+ 6 × .20( )

= .64  

 
 (2) Substituting .30 for rij  and 10 for k gives: 
 
   10 × .30

1+ 9 × .30( )
= .81 

 
 (3) Substituting appropriately gives: 
 
   50 × .10

1+ 49 × .10( )
= .85  
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12. Coefficient Alpha and the Kuder-Richardson 20 Formula 
 
In step (4) of the proof of (11:19) the following formula occurred. 
 

   rxx =
k 2 rij

k + k k −1( )rij

     (11:21) 

 
The denominator of the right hand term is the Z score equivalent 
of the variance of a composite and can be turned into a raw score 
equivalent which will give: 
 

   rxx =
k 2 rijσ iσ j

kσ i
2 + k k −1( )rijσ iσ j

    (11:22) 

 
Where rijσ iσ j  is the mean of the item covariances. 
σ i

2 is the mean of the item variances. 
 
The variance of the composite is of course the variance of the test 
so: 
   σ x

2 = kσ i
2 + k k −1( )rijσ iσ j     (11:23) 

 
It can be shown that: 
 

   σ x
2 − kσ i

2

k k −1( )
= rijσ iσ j      (11:24) 
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Proof 
 
(1) σ x

2 = kσ i
2 + k k −1( )rijσ iσ j   

 
 
(2) Subtracting kσ i

2  gives: 
 
σ x

2 − kσ i
2 = k k −1( )rijσ iσ j  

 
 
(3) Dividing by k k −1( ) gives : 
 

   σ x
2 − kσ i

2

k k −1( )
= rijσ iσ j  

 
 Returning to (11:22) and substituting: 
 

(a) σ x
2 for the denominator, and 

 

(b) σ x
2 − kσ i

2

k k −1( )
 for rijσ iσ j  in the numerator 

 
 
 It can be shown that: 

  rxx =
k

k −1
1−

σ i
2∑

σ x
2

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟       (11:25) 

 
 
Proof 
 

(1) rxx =
k 2 σ x

2 − kσ i
2( ) k k −1( )[ ]

σ x
2  

 

(2)  rxx =
k 2

k k −1( )
σ x

2 − kσ i
2

σ x
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 

(3) In a k item test σ i
2 =

σ i
2∑

k
, therefore kσ i

2 = σ i
2∑ , substituting  

 accordingly and dividing by k gives: 
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   rxx =
k

k −1
σ x

2 − σ i
2∑

σ x
2

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟  

 

       =
k

k −1
1−

σ i
2∑

σ x
2

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟  

 
(11:25) is known as coefficient alpha and it relates to reliability of a 
test to the item variances. 
 
As the ratio of item variances to total variance increases so 
reliability decreases.  The ratio will equal: 
 
 

  
item variances∑

item variances +  item covariances∑∑
 

 
 
As the correlation between items increases so the denominator 
becomes larger, because the item covariances increase, and the 
reliability of the test increases.  This emphasizes yet again the 
importance of item intercorrelations in the domain sampling model 
of reliability. 
 
When coefficient alpha is used with dichotomous items it becomes 
the Kuder-Richardson 20 formula.  Recalling that the variance of a 
dichotomous item is pq, (11:25) , for dichotomous items, becomes: 
 
 

  rxx =
k

k −1
1−

piqi∑
σ x

2

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟      (11:26) 

 
 
This is the method suggested by the domain sampling model for 
assessing the reliability of a test made up of dichotomous items. 
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13. The Estimation of the Reliability Coefficient 
 
In basic text books of psychology three main ways of assessing 
reliability are mentioned.  These are: 
 
   Parallel forms 
   Test-retest 
   Split-half 
 
Usually Kuder-Richardson 20 is mentioned as well as a measure of 
internal consistency. 
 
In the parallel form method of assessing reliability, two supposedly 
parallel forms of a test are administered to the same group of 
subjects with usually a week or two in between administrations.  
The correlation coefficient between tests is then computed and 
taken as an estimate of rxx . 
 
In the test-retest method, the same test is administered on two 
occasions to the same group of subjects, and the correlation 
between scores on the two occasions taken as an estimate of rxx . 
 
The split-half method involves splitting the test into two halves.  
Often the split is in terms of odd numbered items in one half and 
even numbered in the other.  The data is usually gathered in one 
session, i.e. the whole test is administered.  The two halves are then 
correlated, and the coefficient rxx  estimated/  As reliability depends 
on the number of measurements a correction has to be 
incorporated to allow for the halving of test length in computing 
the correlation.  This is done by applying the Spearman-Brown 
formula with k = 2, as the full test is twice as long as each half. 
 
All of these are attempts to form parallel tests, and in terms of true 
scores and error scores involve the following reasoning. 
 
 

  rxy =
t + e1( ) t + e2( )∑
Nσ xσ y
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       = t
2∑

N
+

te1∑
N

+
te2∑

N
+

e1e2∑
N

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

1
σ xσ y

 

 

Because 
te1∑

N
 and 

te2∑
N

 and 
e1e2∑
N

 are covariances of error terms with 

other variables and because by assumption correlation between 
error scores and other variables is zero, all of the terms equal zero.   
 
So we obtain: 
 

  rxy = t
2∑ N

σ xσ y

=
σ t

2

σ xσ y

=
σ t

2

σ x
2  

 
(If the tests are parallel forms σ x = σ y  so σ xσ y = σ x

2).  rxy  therefore 
equals the ratio of true variance to total variance, which equals rxx. 
(If in doubt consult (11:5) and (11:6).) 
 
Problems arise however when we consider what counts as error.  
Each method controls for certain sorts of error and not for others.  
A classification of sources of error is given below with brief 
examples.  Most of these sorts of error arise out of interaction 
between subject and test, subject and situation, subject and tests, 
and so on, but they are listed as separate sources.  In the following 
list 'transient' should be taken as meaning varying from day-to-
day. 
 
(1) Test errors - e.g. faults in standardisation, ambiguities in  
 questions. 
 
(2) Tester errors: 
 (a) durable - e.g. constant errors of administration,  
  permanent behavioural characteristics which affect the 
  subject. 
 (b) transient - careless errors of administration, transient 
  states of behaviour which affect subject. 
 
(3) Situational errors: 
 (a) durable - permanent poor lighting, temperature, etc. 
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 (b) transient - temporary lighting, temperature defects. 
 
(4) Subject errors: 
 (a) durable - sensory defects, inappropriate cultural  
  background for test, etc. 
 (b) transient - headaches, depression, elation, etc. 
 (c) fatigue. 
 (d) memory. 
 (e) practice effects. 
 
 
In general the effects of durable errors can be detected by changing 
the test, the tester, and the situation.  Test-retest correlations using 
as they do the same test, often the same tester and the same 
situation will be higher than they would if these factors were all 
changed. 
 
Transient errors on the other hand can be detected by changing the 
occasions.  Correlations between tests given on different occasions 
will be lowered by day-to-day fluctuations, while correlations 
between tests given on the same day will be higher.  The danger of 
changing occasions is of course, that in the time interval between 
occasions true change can occur, which will be treated as error.  
The relationship of these factors to the different methods of 
measuring reliability is shown below in Table 11:1. 
 
 
TABLE 11:1    ERRORS IN DIFFERENT METHODS OF 
    RELIABILITY ASSESSMENT 

 
(1) Parallel forms (same day): 

No detection of day-to-day fluctuations.  Differential 
proneness to fatigue.  Practice effects probably more 
pronounced than after a time interval.  Durable errors not 
detected, except for test errors. 

 
(2) Parallel forms (different occasions): 
 Real change can be confused with error.  Durable errors 
 not detected except for test errors.  Practice effects. 
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(3) Test-retest (same day): 
 No detection of day-to-day fluctuations.  Differential  
 proneness to fatigue.  Memory produced errors.  Strong 
 practice effects.  No durable errors detected. 
 
(4) Test-retest (different occasions): 
 Real change can be confused with error.  Durable errors not 
 detected.  Memory produced errors.  Practice effect. 
 
(5) Split-half 
 No detection of day-to-day fluctuations.  Durable errors not 
 detected.  Different splits will give different results. 
 
N.B. In all cases there is the question of how good an 
approximation to parallel tests has been obtained. 
 
Some cautions must of course go with the table.  For example, 
fatigue effects will operate within a single test, but they are 
presumably an increasingly important factor as the test gets longer.  
But the table does give an idea of the errors detected by different 
methods of reliability assessment.  The choice of method will 
depend on which type of error is considered most important to 
detect. 
 
The Kuder-Richardson 20 formula uses one test and one testing 
session.  It will be recalled that we derived it from a formula using 
inter-item correlations, and further that the average inter-item 
correlations, and further that the average inter-item correlation was 
the value of interest.  While day-to-day fluctuations will affect total 
score on tests, it is not so likely that they will affect inter-item 
correlations.  If the test is of any length at all the effect of the 
fluctuations might be expected to cancel one another out.  Similarly 
factors such as the effects of ambiguities in items are likely to be 
minimized because of the large number of intercorrelations taken 
into account by the average value.  For these reasons it might be 
argued that the Kuder-Richardson 20 formula is less susceptible 
than the others to the effects of changes of occasion, situation, etc.  
In any case in terms of domain sampling theory K-R 20's use of 
inter-item correlations makes it the best estimate of the correlation 
between scores on the test and true scores. 
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However, the domain sampling theory assumes that the sample of 
items in the test is a random or at least a representative sample, 
and it is obvious from consideration of the way tests are made that: 
 
(1) test items are invented by the test maker, 
(2) they are not a random sample from the domain, and 
(3) that therefore they may or may not be representative. 
 
Further, if the test is composed of heterogenous items K-R 20 will 
yield a low value.  For example if the test was designed to predict 
sales ability, and was composed of personality and intelligence test 
items, we know that personality variables and intelligence tend to 
be uncorrelated, so the items would have low intercorrelations and 
thus K-R 20 would be low.  The other estimates of reliability could 
still be high in this sort of situation, but K-R 20 would be much 
affected by lack of homogeneity amongst items.  Digressing 
slightly, it can be argued that conglomerate tests are undesirable.  
They may be useful for purely empirical and predictive purposes 
but they are of no scientific value.  In the situation outlined we 
should use separate  tests of intelligence and personality variables.  
K-R 20 could then be quite successfully applied to each of the 
separate tests. 
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14. Standard Error of Measurement 
 
It has been shown that in both the true and error score model, and 
the domain sampling model that the variance of error scores is 
equal to: 
    
 
and that the standard error of measurement is: 
 
 
  σ meas = σ x 1− rxx       (11:27) 
 
 
If it can be assumed that the value of σ meas  is the same for all score 
levels, it can be used to estimate the range within which the true 
score is likely to fall.  Consider the distribution below: 
 
 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

 
 
 
 
 
 
 
 
 
 Figure 11.1   The distribution of obtained scores about the true score 
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This is the distribution of an individual's obtained scores about his 
true score.  The standard deviation of this distribution is the 
standard error of measurement.  As the distribution is assumed to 
be a normal one, 68.26 per cent of obtained scores will lie within 
the range + 1 to - 1σ meas ;  95.44 per cent within the range +2 to − 2σ meas; 
and 99.73 per cent within the range +3 to − 3σ meas. 
 
Given an obtained score, which must come from somewhere in the 
distribution, it is possible to work out the range within which the 
true score lies.  As error can be positive or negative we do not 
know whether the obtained score is above or below the true score, 
so in our estimate we will have to allow for  the possibility that it is 
above and the possibility that it is below. 
 
Let us suppose that we want to be 95 per cent certain of including 
the true score in a range that we specify.  Then we would need to 
cover the range indicated in the distribution below in Figure 11.1. 
 
We know from consulting tables for the normal curve that 95 per 
cent of cases be within the range + 1.96 to -1.96σ, so in the case of 
obtained scores 95 per cent will be within the range 
+1.96σ meas to −1.96σ meas. 
 
To allow for the possibility that our obtained score is above  
the true score we subtract from the obtained score 1.96σ meas .  Only 
2.5 per cent of obtained scores above the true score will be further 
away from it than this.  Similarly to allow for the possibility that 
the obtained score is below the true score we must add 1.96σ meas  to 
it.   Only 2.5 per cent of obtained scores below the true score would 
be further away from it than this  So by finding  the range: 
obtained score +1.96σ meas , we can state that it is 95 per cent certain 
that the true score lies within that range. 
 
A step by step analysis might be useful here.  To find the range 
within which the true score is likely to lie: 
 
Step 1.   Calculate σ meas  which equals σ 1− rxx . 
 
Step 2.   Decide on how confident you want to be of including 
     the true score within the specified range. 
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Step 3.   Work out the upper point of the range by adding the 
     appropriate number of σ meas  to the obtained score. 
 
Step 4.   Work out the lower point by subtracting the appropriate 
     number of σ meas  from the obtained score. 
 
     For 95 per cent confidence    +1.96σ meas  
     For 99 per cent confidence   +2.58meas 
     For 99.9 per cent confidence   + 3.29meas   
 
 The two assumptions made on these calculations are: 
 

(1) that σ meas  is the same for every individual; 
(2) that the distribution of obtained scores is normal. 

 
 
It is possible that these assumptions are not always justified.  In 
some models  σ 1− rxx  is the value of the average  σ meas , and in 
some models the distribution of errors is skewed towards the mean 
score for all individuals.  However in most circumstances the use 
of σ meas  in the fashion outlined above will be a reasonable 
approximation. 
 
 
 
Problems 
 
A. If a student obtains a score of 120 on test with a mean of 
 100; a standard deviation of 12; and a reliability coefficient  

of .89, what is the range within which, with 95 per cent 
confidence, his true score lies? 

 
B. A patient is given a test of anxiety with a reliability 

coefficient of .64.  He obtains a score at the 75th percentile, 
which surprises the psychologist, who thought that the 
patient's anxiety would be at the 97.5th percentile.  What is 
the probability of someone with a test score at the 75th 
percentile having a true score at the 97.5th? 
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Answers 
 
A. (1) σ meas  = 1− .891 =12 .11 = 4. 
  

(2)  95 per cent confidence limits = +1.96σ meas =112.16 −127.84  
 
B. (1)  97.5th percentile = Z, +1.96. 
 
 (2) σ meas  in Z score terms = 1− .64 = .60. 
 
 (3)  75th percentile = Z, + .67 , so the obtained score is  
        2.15σ meas  away from a true score at the 97.5th percentile. 
 
 (4)  Less than two people in a hundred with a true score at 
       the 97.5th percentile would be expected to have an 
       obtained score at the 75th percentile. 
 



Philip Ley. Quantitative Aspects of Psychological Assessment                        171 

© 1972, 2007 Philip Ley Text re-typed for computer by Irene Page 
 

15.  Obtaining a Test of a given Reliability 
 
It will be recalled that according to the Spearman-Brown formula 
(11:15), (11:19), the effects of lengthening a test can be estimated 
from the formula: 
 
   r ′ x ′ x =

krxx

1+ k −1( )rxx

 

 
Where r ′ x ′ x  is the reliability of the lengthened test; k is the number of 
items in the new test divided by the number of items in the original 
test; and rxx  is the reliability of the original test. 
 
 
To answer the question of how long a test needs to be to attain a 
given reliability it is necessary to manipulate the Spearman-Brown 
formula to give: 
 

   k =
r ′ x ′ x 1− rxx( )
rxx 1− r ′ x ′ x ( )

    (11:28) 

 
Proof 
 
(1) r ′ x ′ x =

krxx

1+ k −1( )rxx

 

 
(2) Multiplying both sides by 1+ k −1( )rxx gives : 
 
  r ′ x ′ x 1+ k −1( )rxx[ ]= krxx  
 
(3) = r ′ x ′ x + r ′ x ′ x krxx − r ′ x ′ x rxx = krxx  
 
(4) Subtracting r ′ x ′ x krxx  from both sides gives: 
 

  
r ′ x ′ x − r ′ x ′ x rxx = krxx − r ′ x ′ x krxx =

r ′ x ′ x 1− rxx( )= k rxx − r ′ x ′ x rxx( )
 

 
(5) Dividing both sides by rxx − r ′ x ′ x rxx  gives: 
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To use this formula let us suppose that we have a test of anxiety, 
consisting of 20 items, which has a reliability coefficient of .50, and 
that a test with a reliability of .90 is required.  How many items will 
be needed for the more  reliable test? 
 
Substituting values in (11:26) gives: 
 

  k =
.90 1− .50( )
.50 1− .90( )

=
.45
.05

= 9  

 
To achieve a test with a reliability of .90, it will be necessary to 
lengthen the existing one nine-fold.  Thus 180 items will be needed 
to give a reliability coefficient of .90. 
 
 
Problems 
 
A. Given a test with a mean of 100, standard deviation 15, and 
 rxx .90, what is the value of  σ meas? 
 
B. If someone obtains a score of 110 or above on such a test  
 what is the probability of his true score being 100? 
 
C. A questionnaire has a reliability coefficient of .70, and   
 consists of 10 items.  By how much will it need to be 
 lengthened to make its reliability .80? 
 
D. A test has a reliability coefficient of .90, but consists of 180 
 items.  This is considered too long a test for most subjects,  
 and it is proposed to reduce its length to 90 items.  What 
 will be its new reliability coefficient? 
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Answers 
 
A.  σ meas = σ 1− rxx =15 1− .90 =15 × .33 = 5. 
 
B. 110 is two σ meas  above 100.  The probability of someone  
 with a true score of 100 obtaining a score of 110 is .023. 
 
C. Substituting values in (11:26) gives: 
 

  k =
.80 1− .70( )
.70 1− .80( )

=
.24
.14

=1.71 

 
 The new test will need to be 1.71 times as long. 
 
D. For this problem (11:15) or (11:19) should be used. 
 Substituting gives: 
 
  r ′ x ′ x =

.50 × .90
1− .50 × .90( )

=
.45
.55

= .82 

 
 
 



Chapter Twelve 
 

Validity 
 
1. Types of Validity 
 
Traditionally four types of validity have been described: 
 
(1)   Face validity 
 
(2)   Content validity 
 
(3)   Empirical validity 
    (a)   concurrent 
    (b)   predictive 
 
(4)   Construct validity 
 
Face validity is concerned with whether a test looks as if it 
measures what it is supposed to measure.  Of course, tests may 
look as though they measure something and not really measure it 
at all, so face validity is of little use except from the consumer 
relations point of view.   Suppose that there were two tests which 
were equally good at discriminating between neurotics and 
normals, and that one test was made up of questions about artistic 
and literary preferences, and the other of questions about 
nightmares, anxieties, and the like.  The second test has obvious 
face validity and for this reason might be more acceptable to 
patients than the first.  So, other things being equal, face validity 
can be a deciding factor in which of a number of test should be 
used. 
 
Content validity is the extent to which a test adequately samples 
the universe or domain of items which it is supposed to measure.  It 
is of importance in the field of achievement testing.  If, for example, 
it is desirable to know whether a given 12 year old is above or 
below average in arithmetical attainment, it is necessary to have in 
the test an adequate sample of the types of arithmetic operations 
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and problems that average 12 year olds can deal with.  To the 
extent to which the test was an adequate sample, to that extent it 
would have content validity. 
 
Empirical validity is determined by directly relating test scores or 
other predictors to the criterion of interest.  In the case of 
concurrent validity the relationship between a test and a currently 
available criterion is assessed, while in the case of predictive 
validity the criterion does not become available until a later date.  
Empirical validity is usually expressed in the form of a correlation 
coefficient, but sometimes a test of significance between the scores 
of criterion groups is reported instead.  The danger with the latter 
method is that significant differences can in fact be found even 
when the degree of association between predictor and criterion is 
low.  Fortunately methods of working out an index of association 
from tests of significance are available.  Some of these will be 
discussed in Section 5 of this chapter. 
 
Construct validity is assessed by seeing whether scores on a test 
which purports to measure a given trait, are associated with 
behavioural differences which a theory says should be associated 
with the trait.   One of the best examples of this was the use of the 
Taylor Manifest Anxiety Scale by Spence, Taylor and their 
associates.  In these researches it was hypothesised that anxiety was 
a drive state.  In terms of Hull-Spence theory certain predictions 
could be made about the relationship between strength of drive 
and performance.  If the Taylor Manifest Anxiety Scale measured 
drive then high scorers on the scale should differ from low scorers 
on various performance indices.  Much research was generated by 
the theory and the record of success in predicting performance in 
situations where there were no competing responses was good, 
thus suggesting some degree of construct validity for the Taylor 
MAS.  Another good example of construct validity is the work of 
McClelland and his associates on Need Achievement. 
 
These brief descriptions will have to serve for all types of validity, 
except empirical validity.  With regard to this some factors affecting 
the size of the correlation between two variables will be considered, 
as will the derivation of measures of association from some tests of 
significance. 
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2. The Effects of Unreliability on the Correlations between Variables 
 
In terms of true and error scores it is fairly easy to work out the 
effects of unreliability on the correlation between two variables.  If 
the interest is in the correlation between two variables X and Y with 
the effects of unreliability cancelled out from both X and Y, then the 
correlation between true scores on X and true scores on Y is 
required, and this will be given by the formula: 
 
 

   rxt y t
=

x − ex( ) y − ey( )∑
Nσ xt

σ yt

     (12:1) 

 
 
where:   rxt yt

 is the correlation between true scores on X and Y, 
   σ xt

 is the standard deviation of true scores on X, 
   σ yt

 is the standard deviation of true scores on  Y. 
 
 
The standard deviations of true scores are derived from: 
 
  σ xt

= σ x rxx        (12:2) 
 
 
Proof 
 

(1) rxx =
σ xt

2

σ x
2  

 
(2) Multiplying both sides by σ x

2 gives: 
 
  σ x

2rxx = σ xt

2  
 
(3) Taking the square root of both sides gives: 
 
  σ x rxx = σ xt
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Returning to (12:1) and inserting the appropriate formulae for σ xt
 

and σ yt
 gives: 

 
  rxt yt

=
rxy

rxx ryy

      (12:3) 

 
Proof 
 

(1)     rxt yt
=

x − ex( ) y − ey( )∑
Nσ x rxx .σ y ryy

 

 
(2)   Dividing numerator and denominator by N gives: 
 

  
xy + exey − xey − yex∑∑∑∑( ) N

σ xσ y rxx ryy

 

 
(3)   The numerator now consists of a number of covariance 
        terms so (2) can be written: 
 

    
rxyσ xσ y + rex ey

σ ex
σ ey

− rxey
σ xσ ey − ryex

σ yσ ex

σ xσ y rxx ryy
 

 
(4)   By assumption the correlation between error scores and 
        other scores is zero, therefore (3) becomes: 
 
(5)   Dividing numerator and denominator by σ xσ y gives: 
 
   rxt yt

=
rxy

rxx ryy

 

  
the use of this formula is known as correcting for attenuation, and 
it gives the correlation between a p0erfectly reliable measure of X 
and a perfectly reliable measure of Y. 
 
While this correction procedure is of value for theoretical purposes, 
its main usefulness in terms of empirical validity is that it gives the 
upper limit of the correlation obtainable between two variables.  Its 
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computation can therefore help decide whether it is worth taking 
steps to increase the reliability of predictor or criterion. 
 
In real life situations, e.g. predicting essay type exam marks, or 
predicting occupational success, it is often difficult to do much 
about the criterion as this is frequently beyond the investigator's 
control;.  This raises the problem of how well a perfectly reliable 
predictor would correlate with an unreliable criterion.  Again the 
solution is fairly simple: 
 

   rxt y =
rxy

rxx
      (12:4) 

 
 
Proof 
 

(1) rxt y =
x − ex( )y∑

Nσ x rxxσ y

 

 
 

(2) =
xy − ex y∑∑( ) N

σ xσ y rxx

 

 
 
(3) The numerator consists of two covariance terms one of which 
 equals zero: 
 

   
rxyσ xσ y − rex yσ ex

σ y

σ xσ y rxx

=
rxyσ xσ y

σ xσ y rxx
 

 
(4) Dividing numerator and denominator by σ xσ y gives: 

   rxt y =
rxy

rxx
 

 
This formula gives the relationship between a perfectly reliable 
variable and a variable still contaminated by error.  The correction 
for error has only been carried out on one variable. 
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Problems 
 
A. If the reliability coefficient of ratings of improvement in anxiety 
 is .36, and a measure of skin potential before treatment which 
 has a reliability of .64, correlates .24 with ratings of 

improvement, is it worth trying to make the procedures more 
reliable in an attempt to use skin potential to predict response 

 to treatment?  Work out the correlation which would be 
obtained with two error-free measures. 

 
B. An intelligence test with a reliability coefficient of .81  
 correlates .45 with exam marks.  If the test was made perfectly 

reliable what would the correlation with exam marks be? 
 
 
Answers 
 
A. Formula (12:3) is needed here.  Substituting the appropriate  
 value gives: 
 

   rxt yt
=

.24
.36 .64

= .50  

 
 (The correlation would be raised from .24 to .50 which is a sizeable 
increase.  Problems of how long the test would need to be, and how 
long the rating scale would need to be must now decide the issue.  
These could be solved using Kuder-Richardson 20.  The other 
factors affecting the decision would be availability of other 
predictors, and the incremental validity of skin potential, i.e. the 
extent to which it added to predictions made from other sources.) 
 
 
B. Solution of this problem requires formula (12:4), inserting  
 appropriate values gives: 
  

    rxt y =
.45
.81

= .50  
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3. The Effects of Unreliability on the Highest Correlation Possible 
between Two Variables 

 
This topic has in fact been dealt with implicitly in the previous 
section, but because of the common belief that a test cannot have a 
correlation with another test, which is higher than its reliability 
coefficient, this special section has been inserted.   
 
It will be recalled that the variance of a test can be split into two 
components. 
 
    σ x

2 = σ t
2 + σ e

2 
 
Error scores do not correlate with other scores, so the proportion of 
error variance accounted for by other variables must be zero.  This 
leaves true variance (σ t

2) which could be accounted for by another 
variable.  The highest coefficient of determination possible is 
therefore: 

    σ t
2

σ x
2  

 
The square root of the highest coefficient of determination will be 
the highest correlation which that test can have with another: 
 

    rxy (max) =
σ t

2

σ x
2 = rxx     (12:5) 

 
So the highest correlation an unreliable test can have with another 
variable is equal to the index of reliability, which is the square root 
of the reliability coefficient. 
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4. The Effects of Restricted or Increased Range on the  
 Magnitude of Correlation Coefficients 
 
In Chapter 5 this topic was touched on in diagrammatic form.  Now 
a more formal approach will be attempted before considering the 
effects of change in range it is necessary to make two assumptions: 
 
(a) that the standard error of estimate is the same throughout the 
 total range, and 
 
(b) that the slope of the regression line is constant throughout the 
 whole range. 
 
 
It will be recalled that the standard error of estimate was 
symbolised as σ y.x = σ y 1− rxy

2 . 
 
In the following discussion there will be the available data whose 
standard error of estimate will be symbolised as σ y.x, and this will 
be contrasted with the standard error of estimate for the changed 
range ′ σ y.x.  Similarly σ x,σ y  will refer to available data and 

′ σ y ,  ′ σ y  to standard deviations of the changed range.  It will now be 
shown that: 
 

   ′ σ y =
rxyσ y ′ σ x

′ r xyσ x
      (12:6) 

 
 
Proof 
 
(1) By assumption (b) above: 
 

   by.x = rxy

σ y

σ x

= ′ r xy

′ σ y
′ σ y
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(2) Dividing (1) by ′ r xy  gives: 
 

   

rxyσ y

′ r xyσ x

=
′ σ y
′ σ x  

 
 
(3) Multiplying by ′ σ x  gives: 
 
 

   ′ σ y =
rxyσ y ′ σ x

′ r xyσ x
 

 
 
Further, by assumption (a) above, the standard error of estimate is 
constant throughout the range so: 
 
 

   ′ σ y.x = σ y 1− rxy
2 = ′ σ y 1− ′ r xy

2 =
rxyσ y ′ σ x

′ r xyσ x

1− ′ r xy
2

 (12:7) 

 
 
(This last term is obtained by substituting from (12:6).)  Given these 
formulae it can be shown that: 
 
 

   ′ r xy =
rxy

′ σ x
σ x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1− rxy
2 + rxy

2 ′ σ x
2

σ x
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

     (12:8) 
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Proof 
 
(1) From (12:7): 
 

  σ y 1− rxy
2 =

rxyσ y ′ σ x
′ r xyσ x

1− ′ r xy
2

 

 
 
(2) Squaring both sides gives: 
 

  σ y
2 1 − rxy

2( )=
rxy

2σ y
2 ′ σ x

2

′ r xy
2σ x

2 1 − ′ r xy
2( ) 

 
 
(3) Dividing by σ y

2 gives: 
 

  1 − rxy
2 =

rxy
2 ′ σ x

2

′ r xy
2σ x

2 1 − ′ r xy
2( ) 

 
 

(4) Multiplying by 
σ x

2

rxy
2 ′ σ x

2  gives: 

 

   
σ x

2 1− 2xy
2( )

rxy
2 ′ σ x

2 =
1− ′ r xy

2

′ r xy
2  

 
 
(5) The right hand term equals: 
 

   
1
′ r xy
2 −

rxy
2

′ r xy
2 =

1
′ r xy
2 −1 

 
 
 



Philip Ley. Quantitative Aspects of Psychological Assessment                     184 

© 1972, 2007 Philip Ley Text re-typed for computer by Irene Page 
 

(6) Adding 1 to both sides gives: 
 
 

   1+
σ x

2 1− rxy
2( )

rxy ′ σ x
2 =

1
′ r xy
2  

 
 

(7) As a value divided by itself equals unity, 

rxy
2 ′ σ x

2

rxy
2 ′ σ x

2 =1
. 

 
 Substituting this on the left hand term of (6) gives: 
 
 
 
(8) Inverting both sides gives: 
 
 

   
rxy

2 ′ σ x
2

rxy
2 ′ σ x

2 + σ x
2 1− rxy

2( )= ′ r xy
2 = ′ r xy

2
 

 
 
 
(9) Dividing the numerator and denominator of the left hand term 
 by σ x

2 gives: 
 

   

rxy
2 ′ σ x

2

σ x
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

rxy
2 ′ σ x

2

σ x
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =1− rx

2

= ′ r xy
2
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(10)  The square root will give:  
 

   
′ r xy =

rxy
′ σ x

σ x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1− rxy
2 +xy

2 ′ σ x
2

σ x
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 

 
 
This formula gives the correlation between X and Y following a 
change in the range of X.  Examination of the numerator shows that 
the correlation coefficient of the old range is multiplied by the ratio 
of the standard deviation of the new range to the standard 
deviation of the original range.  Thus if the range is increased ′ σ x  
will be greater than ′ σ x  will be greater than σ x  and ′ r xy  will be greater 
than rxy .  While if the range is decreased ′ σ x  will be less than σ x , and 

′ r xy  will be less than rxy . 
 
 
 
Problems 
 
A. If X has a standard deviation of 10 and rxy = .50 , what will be the 
 value of ′ r xy  if the range of X scores is so increased that they 
 have a standard deviation of 20? 
 
 B. Given X, as above, with a standard deviation of 10 and rxy = .50 .  
 What will the value of ′ r xy  be if the range of scores on X is 
 restricted so that ′ σ x = 5? 
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Answers 
 
 
A. 
 
 
 
 

76.
32.1
00.1

75.1
00.1

100
40025.25.1

10
2050.

1 2

2
22

===

⎟
⎠
⎞

⎜
⎝
⎛+−

⎟
⎠
⎞

⎜
⎝
⎛

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
+−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′

=′

x

x
xyxy

x

x
xy

xy

rr

r
r

σ
σ

σ
σ

 
 
 
 
 
 
B.  
 
 

 
′ r xy =

.50 5
10

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

1− .25 + .25 25
100

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

=
.25
.81

=
.25
.90

= .28
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5. Measures of Association from Tests of Significance 
 
It was mentioned in the introduction to this Chapter that it is  
possible to convert the results of tests for the significance of 
differences into measures of association.  Some of these will be 
briefly described. 
  
It will be recalled that the correlation coefficient is equal to the 
square root of the coefficient of determination, which is equal to the 
proportion of variance accounted for.  Most significance tests can be 
converted into such a ratio.  As a first step in the process, suppose 
that j sets of scores are available.   The deviation score of the ith 
individual in the jth group will equal: 
 
 
  Xij − M = Xij − X j( )+ X j − M( )     (12:9) 
 
 
Where Xij  is the score of the ith individual in the jth group. 
        X j  is the mean of scores in the jth group. 
     M is the mean of all scores. 
 
 
From this it follows that the sum of squares can be split into two 
components, where n j = the number of cases in a group. 
 
 
   SSx = SS within( ) + SS between( )    (12:10) 
 
 
Or 
 

   Xij − M( )2
= Xij − X j( )2

+ n j X j − M[ ]2( )
j=1

J

∑
i=1

nj

∑
j=1

J

∑
i=1

N

∑  
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Proof 
 
(1) Xij − M = Xij − X j( )+ X j − M( ) 
 
(2) Xij − M( )2

= Xij − X j( )+ X j − M( )[ ]2
 

 
(3) = Xij − X j( )2

+ X j − M( )2
+ 2 Xij − X j( ) X j − M( ) 

 
(4) Summing across the individuals within a group and 

remembering that within a group X j − M( ) is a constant gives 
 

Xij − M( )2
= Xij − X j( )2

+ n j X j − M( )2

i=1

n j

∑
i=1

n j

∑  +2 Xij − X j( ) X j − M( )∑  

 
 
(5) As Xij − X j( )∑  is the sum of deviations of scores in a group from 

the mean of that group it equals zero, thus: 
 

  Xij − M( )2
= Xij − X j( )2

+ n j X j − M( )2

i=1

n j

∑
i=1

n j

∑  

 
 
(6) Summing across of J groups gives: 
 

  Xij − M( )2
= Xij − X j( )2

+ n j X j − M( )2[ ]
j=1

J

∑
i=1

n j

∑
j=1

J

∑
i=1

N

∑  

 
 
 These values are referred to as follows: 
 

 Xij − M( )2

i=1

N

∑  = Total Sum of Squares = SS total( ) 

 Xij − X j( )2
=

i=1

n j

∑
j=1

J

∑  Within Sum of Squares 

               = SS within( ) 
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 n j X j − M[ ]2( )=
j=1

J

∑    Between Sum of Squares 

       = SS between( ) 
 
 
 
Dividing (12:10) by N gives: 
 
 

   σ x
2 =

SS within( )

N
+

SS between( )

N     (12:11) 

 
 
Thus the variance is split into two parts, one arising from 
differences within groups, i.e. deviations of scores from group 
means, and one part due to differences between groups, i.e. arising 
from differences between group means and the grand mean. 
 
The proportion of variance due to differences between groups will 
be given by: 
 
 

     
SS between( )

SS total( )
     (12:12) 

 
 
This is the proportion of variance accounted for by differences 
between groups, and is analogous to a coefficient of determination.  
Its square root will therefore be analogous to rxy , and is known as 
eta, symbolised η 
 

     η =
SS between( )

SS total( )
    (12:13) 

 
The value of eta can readily be obtained from an analysis of 
variance table by dividing the between sum of squares by the total 
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sum of squares and taking the square root.  The value can also be 
found from the F ratio by means of the formula: 
 
 

     η =
F dfb( )

F dfb( )+ dfw( )    (12:14) 

where 
  
 F is the F ration 
 
 ( dfb ) is the number of degrees of freedom between groups 
 dfw( ) is the number of degrees of freedom within groups 
 
 
Proof 
 

(1) η2 =
SS between( )

SS total( )
 

 

(2) 
SS between( )

SS total( )
=

SS between( )

SS between( ) + SS within( )
 

 
 

(3) But F =
between variance estimate
within variance estimate  

 

  =
SS between( ) dfb( )
SS within( ) dfw( )

=
σ between( )

2

σ within( )
2  

 
(4) From this formula it can be seen that: 
  
 (a) dfb( )σ b

2 = SS between( )  

 (b) dfw( )σ w
2 = SS within( ) 

 (c) σ b
2 = σ w

2 F . 
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(5)  Substituting these values in (2) gives: 
 

  
SS between( )

SS within( )
=

σ w
2 F dfb( )

σ w
2 F dfb( )+ σ w

2 dfw( )  

 
(6) Dividing (5) by σ w

2  gives: 
 

  
SS between( )

SS total( )
=

F dfb( )
F dfb + dfw( )( ) 

 
(7) The square root of this is eta. 
 
If only two groups had been involved it is more likely that a t-ratio 
would have been reported.  As t = F  the formula can be easily 
adapted so: 
 

   η =
t 2

t 2 + df      (12:15) 

 
 
where t is the t ratio computed as usual and df is the number of 
degrees of freedom for t, which equals N - 2, here N is the total 
number of observations. 
 
 
Proof 
 

(1) η =
F dfb( )

F dfb( )+ dfw( )  

 

(2) F = t 2
 so 

 

   η =
t 2 dfb( )

t 2 dfb( )+ dfw( )  
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(3) dfb( ) = the number of groups minus 1, so in the case of a t test 
where the number of groups is 2, dfb( ) = 1 

 
(4) dfw( ) = total df − dfb( ), and total df = N −1, so dfw( ) in the case of  

a t test = N - 1 - 1 = N - 2 
 
(5) But N - 2 = number of degrees of freedom for a t test. 
 
(6) Substituting from (3), (4), and (5) in (2) gives: 
 

  η =
t 2 1( )

t 2 1( )+ df
=

t 2

t 2 + df  

 
 
Strictly speaking the value of eta so obtained will apply only to the 
sample, but a correction can be applied to estimate the population 
value.  The correction consists of subtracting  dfb( )σ 2

within( ) from the 
numerator of step (5) of the proof of (12:14).  In step (6) everything 
was divided by σ 2

within( ), so the corrected value of eta, called epsilon, 
is: 
 
 

   ε =
F dfb( )− dfb( )
F dfb( )+ dfw( )

=
dfb( ) F −1( )

F dfb( )+ dfw( )    (12:16) 

 
 
In most validational and normative studies the value of dfb( ) will be 
small (often only two groups are used), and the value of dfw( ) will 
be high (usually hundreds of subjects are used), so the difference 
between eta and epsilon will be negligible. 
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Problems 
 
 
A. The distribution of scores obtained from 6 diagnostic groups 

on a new test is subjected to analysis of variance with the 
following results. 

   
              Source SS df  Variance          

Estimate 
F 

Diagnosis (between) 100   5        20 10 
Within groups 200 100          2  

 
 
 Work out an index of association between test and diagnosis. 
 
 
B. In a comparison of the scores of schizophrenics and neurotics 
 on a new test a t ratio of 5.0 is found, with a sample of 302 
 neurotics and  300 schizophrenics this is significant at well 
 beyond the .001 level.  Would the test be very valuable for 
 diagnostic purposes? 
 
 
C. In a pilot study 20 employees are placed into four grades of 

success, and an analysis of variance of scores on a test 
administered previously at entry to employment is carried out 
with the following results. 

 
  

Source SS df Mean Square    F 
Grades (between) 27  3            9 9.00 
Within 16 16            1  

 
 What are the values of η and ε for the above data? 
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Answers 
 

A. η =
F dfb( )

F dfb + dfw( )
=

10 × 5
10 × 5( )+100

= .30 = .55 

 

B. η =
t 2

t 2 + df
=

25
25 + 600

= .04 = .20 

 

C. η =
9 × 3

9 × 3( )+16
=

27
43

= .63 = .79  

 

 ε =
dfb( ) F −1( )

F dfb( )+ dfw( )
=

3× 8
3× 9( )+16  

 

 =
24
43

= .56 = .75 
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6. Another Look at Reliability 
 
In the previous section it has been demonstrated that the 
proportion of variance accounted for by differences between 
groups can be assessed from an analysis of variance, and trans- 
formed into a measure of association. 
 
Suppose that instead of a group of scores consisting of scores from 
different individuals in a given condition, the group of scores 
consisted of a number of scores on a given test for one individual. 
Each group would contain m scores from the one individual and 
there would be n individuals. Differences between the n groups 
would now be differences between individuals. In terms of true 
and error score theory the group mean should now approximate 
the true score of an individual, and differences between groups 
should equal differences between true scores and thus be true 
variance—σ t

2. 
 
If the test was perfectly reliable then the individual would 
get the same score on every testing and all scores within a 
group would be the same. In so far as scores within a group 
differ they represent error variance—σ e

2.   Thus SS between( )  would be 
the sum of squares due to true differences and SS within( ) the sum of 
squares due to error. An estimate of the reliability coefficient could, 
therefore, be obtained from : 
 

   
SS between( )

SS total( )
= η2 = rxx  

 
However, more sophisticated methods which estimate the 
value of true and error variance more accurately are preferred. 
One of these is the intra-class correlation coefficient. This is 
derived from the assumptions of the model involved in the 
analysis of variance. By the assumptions of the model (random 
effects or Model 2): 
 
 
 



Philip Ley. Quantitative Aspects of Psychological Assessment                     196 

© 1972, 2007 Philip Ley Text re-typed for computer by Irene Page 
 

(1)  SS within( ) n −1 = MS between( ) = σ e
2 + mσ B

2   (12: 18) 
 

and 
 

(2)  SS within( ) nm − n = MS within( ) = σ e
2

   (12:19) 
 
where: 
 
n =  number of groups, i.e. in this case, number of individuals 

tested 
 
m =   number within groups, i.e. number of times each 
          individual is tested 
 
MS = mean square or population variance estimate 
 
σ e

2   = error variance 
 
σ B

2   = variance due to non-chance differences between 
          groups, 
          i.e. in this case, true score variance 
 
 
Reliability is defined as the ratio of true variance to total 
variance so, as total variance will equal true variance plus 
error variance, it is necessary to form the ratio : 
 

  
σ B

2

σ B
2 + σ e

2        (12:20) 

 
This can be done by using the following formula: 
 

  
MS between( ) − MS within( )

MS between( ) + m −1( )MS within( )
= rxx      (12:21) 

 



Philip Ley. Quantitative Aspects of Psychological Assessment                     197 

© 1972, 2007 Philip Ley Text re-typed for computer by Irene Page 
 

Proof 
 
(1)  Using (12:18) and (12:19), (12:21) can be written as: 
 

   
mσB

2 + σ e
2 −σ e

2

mσB
2 + σ e

2 − m −1( )σ e
2  

 
(2)    This simplifies to: 
 

    
mσ B

2

mσ B
2 + mσ e

2  

 
 
 
(3)    Dividing by m gives: 
     

    
σ B

2

σ B
2 + σ e

2 =
σ t

2

σ t
2 + σ e

2 = rxx  

 
Although this discussion has been in terms of true scores and error 
scores it is interesting to note that (12:21) approximates to the mean 
intercorrelation between tests. The proof of this previous statement 
would take us too far afield, but it will be recalled that the mean 
intercorrelation between items or tests is related to reliability in the 
domain sampling model. 
 
For further details of the assessment of reliability by analysis 
of variance techniques see McNemar (1969) and Winer (1962). 
 
 
 
 
 
 
 



Chapter Thirteen 
 

The assessment of individual results 
 
1.  Introduction 
 
This chapter will be concerned with a number of topics more 
or less directly related to what has gone before. It should be 
emphasised that a large number of statistical methods can be 
applied to the study of individual cases and references to these 
will be found at the end of the book. We will be concerned 
only with the reliability of differences in score and changes in 
score, and the assessment of the rarity or abnormality of 
differences or changes in score. Specifically we will deal with 
the following questions: 
 
(1)  Is a difference in score between two individuals on the same 
 test likely to be due to chance? 
 
(2)  Is a difference in score for the same individual on two 
 occasions likely to be due to chance? 
 
(3)  Is a difference between an individual's scores on two tests 
 likely to be due to chance? 
 
(4)  How rare is a given difference between an individual's 
 scores on two tests? Is it abnormally large? 
 
(5)  How rare is a given change in an individual's score in the 
        same test? Is it large enough to be considered abnormal? 
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2.  Differences between Two Individuals on the Same Test 
 
The problem here is to decide how likely it is that two different 
obtained scores represent two different true scores.  If we had 
the standard deviation of the distribution of differences between 
obtained scores when the true scores are the same, we could work 
out a Z score for the difference we obtain and look this up in tables 
for the normal curve. We could then see what proportion of 
differences, when true scores do not differ, would be larger than 
the one we have obtained. This proportion would give us the 
probability that the two obtained scores in fact represent two 
identical true scores. It is not too difficult to work out what the 
distribution should be. We will use deviation scores to make the 
derivation simpler.   σ diff

2  is the variance of the difference between 
scores : 
 
 

(1)  σ diff
2 =

x1 − x2( )− x 1 − x 2( )[ ]2∑
N

 

 
 
(2)  but x1 = t1 + e1( );  and x2 = t2 = e2( ) and x 1 and x 2 are 

mean deviation scores and thus equal to zero. So 
 

σ diff
2 =

t1 + e1( )− t2 + e2( )[ ]2∑
N

 

 
 
(3)  But we are concerned with the variance of differences 

between scores when ti = t2. So: 
 

  σ diff
2 =

t + e1( )− t + e2( )[ ]2∑
N

 
 
 

        =
e1 − e2( )2∑

N
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(4)  This equals     
 

e1
2 + e2

2 − 2e1e2( )∑
N

 

 

(5)  =
e1

2∑
N

+
e2

2∑
N

− 2
e1e2∑
N

 

 
 
(6)  But the last term is the covariance of error scores and 
      equals zero and the first terms are error variances so 
      

σ diff
2 = σ e1

2 = σ e2

2
 

 
 
(7)  But the error variances will also be equal and will equal 
       σ meas  squared, so: 
 

  σ diff
2 = 2σ 2 1− rxx( ) 

 
 
(8) The square root of this will be the standard deviation of 
      the distribution of differences between obtained scores 
      when the true scores are identical. 
 
 

σ diff = 2σ 2 1− rxx( ) = σ meas 2     (13:1) 
 
 
 
Thus to see whether two obtained scores differ, their differences 
should be divided by σ meas 2 .   This will yield a Z score for the 
distribution of differences obtained on a chance basis, and 
by reference to tables for the normal curve the significance of 
this difference can be assessed. 
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Problem 
 
A obtains a score of 90 on a test with a mean of 100 and a 
standard deviation of 10. On the same test B obtains a score 
of 104. If the reliability coefficient of the test is .755, with what 
degree of certainty can we conclude that B's score is really 
higher than A's? 
 
 
 
Answer 
 

The σ diff = 2σ 2 1− rxx( ) = 2 ×100 × .245 = 7.   The difference 
between A's score and B's score is 14 points.  Dividing this by 7 
gives an answer of 2. A difference of 14 points is, therefore, 2 
standard deviations away from the mean of differences obtained 
on a chance basis. Less than 5 per cent of chance differences will be 
as large as this. 
 
 



Philip Ley. Quantitative Aspects of Psychological Assessment                          202 
 

© 1972, 2007 Philip Ley Text re-typed for computer by Irene Page 
 

3.  Differences between Scores on the Same Test for the Same 
Individual on Two Occasions 

 
The problem here is to find whether a change in scores obtained 
on two separate occasions is likely to be due to chance. Once more 
what is needed is the distribution of differences between two 
obtained scores when the true scores are in fact the same. This is 
precisely the same situation as the one above, and the appropriate 
Z value can be found by: 
 
 

  
Difference between scores

σ meas 2  

 
One slight problem here is that if the individual takes the same test 
twice there are almost certain to be practice effects.  If these are 
known the formula is modified to take account of them thus: 
 
 

  
Difference between scores - practice effect

σmeas 2  
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4.  Differences between Scores on Two Different Tests/or One 
Individual 

 
In this case the distribution of interest is the distribution of 
differences between obtained scores on two different tests 
when the scores on each test are in fact the same. For this to be 
a sensible procedure the scores on each test should be in 
comparable units, e.g. T. scores, I.Q.s with same mean and σ, 
or Z scores, because we are not interested in differences in the 
scores as such, but in differences in the individuals' relative 
standing on the two tests. The derivation of the formula follows 
the same steps as those above, except that we have x and y as 
our deviation scores. 
 
 

(1) σ diff
2 =

x − y 2( )∑
N  

 
 

(2) =
tx + ex( )− ty + ey( )[ ]2

∑
N  

 
 
(3) Because we are interested in the situation where tx = ty 

     this becomes: 
 
 

  
ex

2 + ey
2 − 2exey( )∑

N  

 
 
 (4) This equals σ ex

2 + σ ey

2  
 
 
(5)   So  σ diff

2 = σ ex

2 + σ ey

2 = σ meas.x
2 + σ meas.y

2 . 
 

If this is computed in Z scores the standard deviation will 
be 1, so: 
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      σmeas.x + σmeas.y = σ x 1− rxx + σ y 1− ryy  
 
   

                          =  (in Z score terms) 2 − rxx + ryy( ) 
 
So to assess the probability that a difference between scores 
on two tests is due to chance we have the formula: 
  
 

   
Zx − Zy

2 − rxx + ryy( )       (13:2) 

 
 
 
Problem 
 
On a test of intelligence involving visual material an individual 
scores at the 75th percentile, while on a test involving verbal 
material the score is at the 50th percentile. Is there any reason 
for supposing that the difference between the test materials is 
affecting the individual's performance, if the reliabilities of the 
tests are .80 and .84 respectively? 
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Answer 
 
The problem here is whether this difference is attributable to 
chance or not. The formula is: 
 

   

Zx − Zy

2 − rxx + ryy( )  

 
Filling in the appropriate values we obtain: 
 

   
.67 − .00
2 −1.64

=
.67
.60

=1.12  

 
 
The difference is, therefore, not very large, and by chance 
approximately 26 per cent of differences would be larger than 
this. 
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5.  Abnormality of a Difference between Scores on Different Tests 
 
So far we have been concerned with the problem of whether 
differences observed are due to errors of measurement. In this 
and the next section our concern will be with whether a 
difference is abnormally large in the sense that it is so large as to 
happen rarely.  For this purpose we need the standard deviation of 
the distribution of differences between scores.   
The derivation is as follows: 
 

(1) σ diff
2 =

X −Y( )− X −Y ( )[ ]2∑
N  

 
(2) = X 2 + Y 2 + X 2 + Y 2 − 2XY − 2XX + 2XY +( )∑  
 

(3) =
X 2∑

N
+

Y 2∑
N

+
NX 2

N
+

NY 2

N
−

2 XY∑
N

−
2 X∑

N
X   

 

    +2
X∑

N
Y + 2

Y∑
N

X − 2
Y∑

N
Y − 2 NX Y 

N
 

 

(4) But, 2
X∑

N
Y = 2X Y , 2

X∑
N

X = 2X 2  and so on, so we obtain: 

 

 
X 2∑

N
− X 2 +

Y 2∑
N

−Y 2 − 2
XY∑

N
− X Y 

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟  

 
(5) This equals: 
 

  σ x
2 + σ y

2 − 2rxyσ xσ y  
 
 (the last term is a covariance term) 
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(6) The square root of this will be the standard deviation of  
 differences. 
 

  σ diff = σ x
2 + σ y

2 − 2rxyσ xσ y  
 
In terms of Z score the formula becomes: 
 

  
Zx − Zy

2 − 2rxy
       (13:3) 

   
 
Once more a raw score version should only be used when scores 
on both tests have the same mean and standard deviation. 
 
 
 
Problem 
 
On a test with a mean of 100 and standard deviation of 15 an 
individual obtains a score of 130. On a second test with a mean 
of 100 and a standard deviation of 10 he scores 90. If the 
correlation between these tests is .50, how abnormal is this 
discrepancy? 
 
 
 
Answer 
 
Formula (13:3) is appropriate here: 
 

  
Zx − Zy

2 − 2rxy

=
2.00 − −1.0( )

2 − 2 × .50( )
= 3.0  

 
The difference is therefore 3 standard deviations away from 
the mean of differences expected on the basis of the correlation 
between the tests. Only about 3 cases in 1,000 would show a 
difference as large as this. 
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6.  The Abnormality of a Change in Score 
 
A method for assessing changes in score for an individual, when 
expected change is due only to the unreliability of the test or 
measure has been described in Section 3 of this chapter. 
Sometimes, however, expected change is due to factors other 
than poor reliability.  Over a period of time real change might 
have occurred. Degree of depression, amount of anxiety, a 
level of skilled performance are examples of variables which 
might show real change with passing time. In this kind of 
situation two distinct questions can be asked about the 
observed change:                          
 
(1)  is it so great that it is unlikely to be due to errors of 

measurement—the problem dealt with in Section 3; and 
 
(2)  is it so great that it is unlikely to be due to errors of 
 measurement and normal real changes? 
 
 
The method for dealing with the second problem involves: 
 
(1)  using a regression equation to predict the second score 
 from the first; 
 
(2)  finding the difference between the obtained and predicted 
 scores; 
 
(3)  assessing the significance of this difference in terms of the 
 standard error of estimate. 
 
This can be done using the formulae described in Chapters 5 
and 6. The score on the first occasion will be called X and the 
score on the second occasion will be called Y, and the formula 
will be presented in Z score terms, r  is the correlation 
between test and retest over the period of interest. 
 
 
 
 



Philip Ley. Quantitative Aspects of Psychological Assessment                          209 
 

© 1972, 2007 Philip Ley Text re-typed for computer by Irene Page 
 

(1) ˆ Z y = rxyZx =  predicted score; 
 
(2) ˆ Z y − Zy = difference between obtained and predicted score; 
 
(3) the standard error of estimate is (in Z score terms): 
 

   1− rxy
2

 
 
So the Z score for the distribution of obtained scores around 
predicted scores will be: 
 

ZY − ˆ Z Y
1− rxy

2        (13:4) 

 
 
Once more the situation can be complicated by practice effects. To 
allow for these ˆ Z Y can be modified to equal: 
 
 

   rxyZX +
practice effects

σ y
 

 
 
If the Z obtained by use of (13:4) is converted to a percentile it will 
give the percentage of people, starting with the same score as the 
individual of interest, who would be expected to obtain a lower (or 
higher) score than him on the second occasion. 
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Problems 
 
A. A child is tested at the age of 3 years on a test of intelligence 
 and obtains a score of 160, and retested at age 7 obtaining a 

score of 155. If the test-retest correlation over this period 
         of time is .50, and the mean and standard deviation are 100 
         and 15 respectively, what proportion of children would 
       show a drop in score as large as this. (Assume that practice 
       effects are negligible over this period of time.) 
 
 

B. After relaxation training of three months' duration a 
 patient's anxiety score drops from the 84th to the 50th 
         percentile. The therapist concludes that a change of this 
         magnitude must indicate that relaxation has been successful 

         in treating the patient's anxiety. If for untreated cases the 
test-retest correlation of the anxiety measure (over 3 months) 
is   .60, is the therapist justified? 

 
 
 
Answers 
 
A.  Inserting values in (13:4) gives: 
 

  
3.67 − 4.00 × .50( )

1− .502
=

1.67
.87

=1.92 

    
 

The difference of minus 5 points is thus 1.92 standard 
deviations above the mean of expected differences. 
Approximately 97 per cent of children would show a greater 
drop. Less than 5 per cent of children who started with a 
score of 160 at age 3 would be expected to obtain a score as 
high as 155 at age 7. It might, therefore, be worth considering 
factors which might have caused a rise in intelligence in this 
child. 
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B.  The change is not so large as to be very rare. Using formula 
 (13:4) again gives: 
 
 

   
0 − .60 ×1.0( )

1− .602
=

−.60
.80

= −.75 

 
 
 The second anxiety score is three quarters of a standard 
 deviation below what would be expected, but about 23 
 per cent of untreated patients with the patient's initial score 

would be expected to show a greater drop in anxiety 
 in the normal course of events. 
 
 



 
Chapter Fourteen 

 Classification 
 
 
1.  Introduction 
 
This chapter is concerned with a number of problems which 
arise in the use of tests for classification purposes. These are: 
 
(1)  The selection of cut-off points. 
(2)  The effects of base rates on the usefulness of tests. 
(3)  The effects of selection ratios on the effectiveness of selection 
        procedures. 
 
 If we are concerned with the prediction of continuous 
variables, and are interested only in the value of scores on them, 
none of the above problems arise, but most practical uses of tests 
are in fact concerned with allocating subjects to groups. The 
problems are therefore real ones to the test user and an 
introductory account is thus desirable. 
 
 
2.  Selection of Cut-off Points 
 
A problem which frequently arises in the use of tests is the 
problem of locating a cut-off score for use in differentiating 
two groups. It would be nice if distributions of scores of different 
groups were separate from one another but in real life they 
inevitably overlap. The scores of schizophrenics on tests of 
thought disorder overlap with those of neurotics, the scores of 
successful salesmen on intelligence and interest tests overlap with 
those of unsuccessful salesmen, and so on. Such a situation is 
shown in Figure 14.1 for two groups A and B. 
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The problem is to find that point which classifies A and B as 
accurately as possible, if we make the rule that subjects scoring 
on one side of the point will be called A and those on the other 
called B. In fact the solution is quite simple. If we take as our 
cut-off point the point where the distributions overlap, we will 
have achieved the best discrimination possible. This is shown 
in Figure 14.2. 
 

 
 

In (a) the cut-off point is at the point of intersection of the 
two curves and the cases misclassified will fall in the shaded area. 
In (b) the cut-off point is moved to a higher value. The original 
area of misclassification is still there, shaded, but it has now had 
added to it, the cases in area b. In (c), the cut-off point has been set 
at a lower value. Again the original amount of misclassification is 
obtained plus the cases in area c. So it can be seen that putting the 
cut-off point at any point other than the intersection of the curves, 
will lead to an increase in errors of classification. Note that the 
point where the curves intersect will be the point where the 
number of cases in A equals the number of cases in B, and this fact 
can be used to find the best cut-off point. 
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Problem 
Where would you place cut-off points in Figure 14.3 a and b? 
 

 
 
 
 
 
Answer 
 
 The solution involves the placing of two cut-offs. In each 
 case a cut-off is placed at the points where the curves 
 intersect; Placing at any other point will lead to a greater 
 number of errors. 
 
 
 
3.  The Effects of Base Rates on the Usefulness of Tests 
 
There are circumstances where the use of a highly reliable and 
highly valid test will lead to a greater number of errors than 
would have been made without the use of any test at all. 
 
 A base rate is the relative frequency with which a certain 
category or characteristic appears in the population of interest. 
The base rate for schizophrenia in a mental hospital is given 
by the proportion of patients in the hospital who are 
schizophrenic. The base rate for schizophrenia in cases seen by the 
psychology department will in most cases be different from the 
hospital base rate. Only if the cases referred are a representative 
sample of all of the cases in the hospital will the two base rates be 
the same. Similarly the base rate for successful executives in a 
given industry may well be different from the base rate for 
successful executives amongst applicants to a management 
selection firm selecting for that industry. 
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 Given the base rates for various categories in the population 
of interest, what is the best classification rule to follow in the 
absence of any other information? To make this concrete let us 
suppose that amongst cases referred to a psychology department 
in a hospital 20 per cent are brain damaged, 35 per cent 
schizophrenic, 25 per cent affective psychosis, and 20 per cent 
neurotic. What rule can be applied in this situation to make the 
smallest number of errors?  
 
If we call every patient brain damaged we will be wrong in 80 per 
cent of cases, if we call every patient schizophrenic we will be 
wrong in 65 per cent of cases, if we call everyone an affective 
psychotic, we will be wrong in 75 per cent and if everyone is called 
neurotic 80  per cent will be misclassified. Clearly the smallest 
number of errors occurs when we call everyone schizophrenic. 
This leads to only 65 per cent error. Any other decision will 
increase errors over this figure. So by choosing the commonest 
diagnosis – schizophrenia - we make fewer mistakes than by 
choosing any other diagnosis.  
 
The general principle is that, in the absence of other information, 
fewest errors will be made by guessing that everyone is in the 
category with the highest base 
rate. 
 
Sometimes accuracy using base rates alone can be very high. 
Suppose that the problem in the example above had been to 
classify patients as brain damaged or not brain damaged. If we 
called every patient brain damaged we would be wrong in 80 per 
cent of cases. If we called everyone not brain damaged, then we 
would be wrong in only 20 per cent of cases. 
 
We now need to introduce the concept of conditional 
probability. Continuing with our example let us suppose that in 
the hospital from which the psychology department's population 
is drawn the base rate for brain damage is 5 per cent. Thus the 
probability that a patient drawn at random from this population 
will be brain damaged is pBD = .05.  The probability that the 
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patient is brain damaged given that he has been referred to the 
psychology department is pBD/RTPD—probability of brain 
damaged given that (/) the patient has been referred to the 
psychology department is .20. This is known as a conditional 
probability. Generally pA/B can be read as the probability of A 
given that B occurs, or the probability of A conditional on B. The 
standardisation data of diagnostic tests and classification 
instruments are often given in terms of the proportions of a group 
obtaining a score above and below a criterion. These data can be 
worked on as conditional probabilities. Consider the following 
hypothetical example. A test of brain damage correctly classifies 
60 per cent of brain-damaged patients, and 90 per cent of not- 
brain-damaged patients. The data are shown below: 
       
          
  Test Diagnosis 
   

Brain Damage 
No Brain 
Damage 

 
 
True 
Diagnosis 

 
Brain 
Damage 

 
60 per cent 

 

 
40 per cent 

 
No Brain 
Damage 

 
10 per cent 

 
90 per cent 

 
 

 
The rows of the table give the probability of a brain damage 
score conditional on a given true diagnosis. 
 

pTBD/BD = .60; pTNBD/BD = .40 and 
 
         pTBD/NBD = .10; pTNBD/NBD = .90 
 
where 
 

TBD = test diagnosis of brain damage 
   BD = true diagnosis of brain damage 
NBD = true diagnosis of no brain damage 

        TNBD = test diagnosis of no brain damage 
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However, when we use the test we are interested in probabilities 
which are conditional in the other direction. We do not want to 
know pTBD/BD or pTBD/NBD, we want to know pBD/TBD and 
pNBD/TBD and so on. Given a test score we want to know the 
probability of the diagnosis. On reflection we can see that the 
proportion of the population who will be both (a) brain damaged 
and (b) have a test score indicating brain damage will be: 

 
Proportion of brain damaged in population 
 
                 Multiplied by 
 
Proportion of brain damaged  
who obtain brain damaged score on test 

 
 
The proportion of brain damaged patients is of course the 
base rate for brain damage. So p(BD and TBD) = pBD x pTBD/BD. 
However the proportion of patients who are both (a) brain 
damaged and (b) obtain a brain damaged score is only half the 
story. Other people will also get brain damaged scores. If we want 
to know the proportion of people obtaining brain damaged scores 
who are in fact brain damaged we need to work out the ratio. 
 

Proportion who are: 
    (a) brain damaged, and 
    (b) get brain damaged scores  
  
            Divided by 
 
Total proportion of patients 
 who get brain damaged scores 

 
Fortunately it is easy to work out the proportion of patients 
who are both (a) not-brain-damaged and (b) who get brain  
damaged scores. It will be 
 

Proportion of not-brain-damaged patients 
   
                Multiplied by 
 
Proportion of not-brain-damaged patients 
who obtain brain damaged scores. 
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This equals: 

 
pPNBD x pTBD/NBD 

 
where   pNBD    is the base rate for no brain damage. 
 
Putting this together we obtain: 
 
      pBD/TBD  = pBD x pTBD/BD                                         
       ________________________________________                     (14:1) 

(pBD x pTBD/BD) + (pNBD x pTBD/NBD) 
 

 
 
Similarly it can be shown that: 
 
 

             pNBD x pTNBD/NBD 
pNBD/TNBD =  _____________________________________     (14:2) 
                           pNBD x pTNBD/NBD) + (pBD x pTNBD/BD) 
 
 
 
The proportion wrongly classified will consist of: 
 

(1) Patients who are 
     (a) brain damaged, and 

               (b) obtain a normal score 
     plus 

 
(2) Patients who are 
     (a) not brain damaged, and 

               (b) obtain a brain damaged score 
 

The first value will be given by: 
 
     proportion of brain damaged patients x proportion of brain 
     damaged who get normal score   =   pBD x pTNBD/BD. 
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and the second by 
 
     proportion of non brain damaged patients x proportion of 
     non-brain-damaged who obtain brain damaged scores   
 
                             =     pNBD x pTBD/NBD. 
 
As an example of the use of these formulae let us suppose 
that the test, whose standardization data were given above (and 
are repeated here) is used on a population where the base rate for 
brain damage is 20 per cent.  The base rate for non-brain damge 
will thus be .80. 
 
  Test Diagnosis 
   

Brain Damage 
 

No Brain Damage   
 
 
True 
Diagnosis 

Brain 
Damage 

 
60 per cent 

 

 
40 per cent 

 
No Brain 
Damage 

 
10 per cent 

 
90 per cent 

 
 
 
 
Using the formulae we can see: 
 
(1)  that the probability of the patient being brain damaged if 
 he gets a brain damaged score  =  pBD/TBD = 
 
    .20 × .60

.20 × .60( )+ .80 × .10( )
=

.12

.20
= .60 

 
(2)  that the probability of the patient being not brain damaged 
 if he gets a not brain damaged score  =   pNBD/TNBD = 
 
    .80 × .90

.80 × .90( )+ .20 × .40( )
=

.72

.80
= .90 
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(3)  that the total proportion misclassified will be 
 
   pBD/TNBD  + pNBD/TBD  
 
   = (.20 x .40)  + (.80 x .10) = .16 
 
(4)  the proportion correctly classified will be 
 
 1 — proportion misclassified = 1 — .16 = .84 
 
 
Just using the base rate we would have guessed that any 
patient from this population was not brain damaged and we 
would have been right 80 per cent of the time. The use of the test 
has therefore increased our proportion of successes from .80 to .84. 
 
If the base rate for brain damage had been .l0 instead of .20, the 
picture would have been as follows: 
 
 
 (1) pBD/TBD = .10 × .60

.10 × .60( )+ .90 × .10( )
=

.06

.15
= .40 

 
 
So the majority of patients with a brain damage score would 
have been not brain damaged. 
 
 (2)  pNBD/TNBD = .90 × .90

.90 × .90( )+ .10 × .40( )
=

.81

.85
= .95 

 
 (3)  pBD/TNBD  +   pNBD/TBD =  
 
   (.10 x .40) + (.90 x .10) = .13 
 
 
In this case use of the base rate alone would have lead to only 10 
per cent errors, while using the test has increased this to 13 per 
cent. So we have made more mistakes with the test than without it. 
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Problems 
 
Given the following data: 

 
  Test Diagnosis 
   

Brain Damage 
 

Normal 
 
 

True 
Diagnosis 

 
Brain Damage 

 
.50 

 
.50 

 
 

Normal 
 

.20 
 

 
.80 

 
 
A.  What is the probability that a patient who obtains a brain 

damaged score is brain damaged in a population where the 
base rate for brain damage is .20, and for normalcy .80? 

 
 
B.  What is the probability that someone obtaining a normal 

score is brain damaged? 
 
 
Answers 

A.  pBD/TBD 
 
  =

pBD× pTBD/BD
pBD× pTBD/BD( )+ pNBD× pTBD/NBD( )

 

 
  =

.20 × .50
.20 × .50( )+ .80 × .20( )

= .38  

 
B.  pBD/TNBD 

 
  = pBD× pTNBD/BD

pBD× pTNBD/BD( )+ pNBD× pTNBD/NBD( )
 

 
  = .20 × .50

.20 × .50( )+ .80 × .80( )
= .135  
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The methods can be easily extended to more than two 
groups. Suppose that the following data are available. 
 

Test Diagnosis 
 

Not 
Brain Damage     Brain Damaged 

True       Brain Damage         60               40 
Diagnosis    Psychosis             30               70 

 Neurosis               20               80 
              Normal                10               90 
 
 
Given base rates of: 
 
   Brain damage         .10 
   Psychosis              .40 
   Neurosis             .40 
   Normalcy             .10 
 
The probability of a diagnosis of brain damage given a test 
score indicating brain damage will be     pBD/TBD 
 
 
     pBD x pTBD/BD  
= _______________________________________________ 
 (pBD x pTBD/BD) + (pPsychosis x pTBD/Psychosis) 
 + (pNeurosis x pTBD/Neurosis) 
 + (pNormalcy x pTBD/Normalcy) 
 

 
=

.10 × .60
.10 × .60( )+ .40 × .30( )+ .40 × .20( )+ .10 × .10( )

 

=
.06
.27

= .22  

 
 
If we repeat this calculation for all groups and work out 
pPsychosis/TBD, pNeurosis/TBD, and pNormal/TBD we will 
obtain the following values: 
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   pPsychosis/TBD  = .44 
   pNeurosis/TBD    = .29 
   pNormalcy/TBD  = .04 
 
Thus the most frequent true diagnosis amongst those diagnosed 
by the test as brain damaged will be psychosis, If we bet that 
everyone with a brain damage score is psychotic we will make 
fewer mistakes than if we use other diagnosis. All of this may lead 
to gloomy thoughts about the value of tests but it is worth noting 
that if in these examples we had guessed that everyone was brain 
damaged, only 10 percent would have been, whereas if we call all 
of those getting a test score indicating brain damage brain 
damaged, 22 per cent will in fact be brain damaged. In this sense 
the test has been useful. Further a test diagnosis of not brain 
damaged is pretty useful. The proportion not brain damaged 
when the test says no brain damage will be 
 

((pPsychosis x pTNBD/Psychosis) 
+ (pNeurosis x pTNBD/Neurosis) 

                 + (pNormalcy x pTN BD/Normalcy)) 
 

divided by 
 

((pPsychosis x pTNBD/Psychosis 

+ (pNeurosis x pTNB/Neurosis)   

      + (pNormalcy x pTNBD/Normalcy) 
       + (pBD x pTNBD/BD)) 

 
 

=
.40 × .70( )+ .40 × .80( )+ .10 × .90( )

.40 × .70( )+ .40 × .80( )+ .10 × .90( )+ .10 × .40( )
 

 
 

.69

.73
= .95 
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Problems 
 
(1)  If in the above example the base rates had been: 
 

  (a) Brain damage     .40 
  (b) Psychosis         .20 
  (c) Neurosis           .20 
  (d) Normalcy        .20 

 
work out: 
 

  (i) the value of pBD/TBD 
  (ii) the value of pNormal/TBD 
  (iii) the value of pNBD/TNBD 
  (iv) the value of pPsychosis/TNBD 

 
 
(2)  It is probably important to detect as many brain damaged 
patients as possible. Suppose the cut-off were moved so as to 
identify a greater proportion of the brain damaged, what would 
happen to the value of PNBD/TBD? 
 
Answers 
  

(1) (i)   

.40× .60( )
.40× .60( )+ .20× .30( )+ .20× .20( )+ .20× .10( )

=
.24
.36

= .67
 

 
 
 
 

(ii) .20 × .10( )
.40 × .60( )+ .20 × .30( )+ .20 × .20( )+ .20 × .10( )

 

 
=

.02

.36
= .06 
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            (iii) .20 × .70( )+ .20 × .80( )+ .20 × .90( )
.20 × .70( )+ .20 × .80( )+ .20 × .90( )+ .40 × .40( )

 

 
=

.48

.64
= .75 

 
 

         (iv) .20 × .70( )
.20 × .70( )+ .20 × .80( )+ .20 × .90( )+ .40 × .40( )

 

 
=

.14

.64
= .22 

 
 
 
3.  The Effects of Selection Ratios on the Effectiveness of 

Selection Procedures 
 
A selection ratio is usually defined as the number of jobs available 
divided by the number of applicants for those jobs. If there are five 
applicants available for every job the selection ratio is .20; if there 
are twenty applicants for every job it is .05 and so on. Given a 
valid predictor of job success and a selection ratio of .20, one 
would give the jobs to the 20 per cent with the highest scores on 
the predictor, or more generally give the jobs to the lop N per cent 
of applicants (where N = selection ratio x 100). The effectiveness of 
this in terms of the proportion selected who are satisfactory varies 
with: 
 
(1) the size of the correlation between predictor and criterion 
(2) the selection ratio 
(3) the criterion cut-off point, from which can be deduced the 
     proportion who are potentially successful, i.e. the base rate 
     for success amongst applicants 
 
The reader will not be surprised to hear that the proportion 
of those selected who are judged successful depends on the size of 
the correlation coefficient, because all we are saying is that 
prediction gets better as rxy  gets higher. The other relationships 
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may not be quite so obvious. Figure 14.4 shows three scatter 
diagrams, a, b, and c.  
 

 
 
Figure 14.4  Successes (B and C) and errors.  (A and D) in relation to criterion 
        and predictor (test scores) cut-off points 
 
  
In (a) the selection ratio is approximately .50 and the proportion 
above the criterion cut-off is also about .50.  If we use our test for 
selection we will select applicants filling in areas B and D, and of 
these a proportion B

B + D
 will be successful, and the rest not 

successful. 
 

 
In scatter diagram (b) the criterion cut-off remains the same 
but the selection ratio has decreased. Fewer applicants are now 
selected. Once more the applicants selected will be those in areas B 
and D but it can be seen that the proportion of successes B

B + D
  is 

now much larger.  So as the selection ratio decreases so the 
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proportion of those selected who are successes increases. Now look 
at the proportion of cases in area A. These are those who would 
have been successful who have been rejected by the test. As the 
selection ratio decreases the ratio of this group to those selected 
goes up. So a decrease in the selection ratio leads to: 
 
(1)  a higher proportion of satisfactory employees amongst 

those selected 
(2)  a smaller proportion of all potentially satisfactory employees 

being selected 
 
In the industrial situation one is more concerned with the 
first of these, but for educational purposes, or for purposes of 
selecting patients for treatment the second is also important. 
 
In diagram (c) the selection ratio is once more approximately 
.50, but this time the criterion cut-off has been raised. Now a 
smaller proportion of employees is considered satisfactory.  The 
effect of this is to decrease the ratio B/(B + D), and also to decrease 
the ratio A/(A + B) so raising the criterion cut-off leads to: 
 
(1)  a decrease in the proportion of those selected who are 

considered satisfactory 
(2)  an increase in the proportion of those potentially 

satisfactory who are selected 
 

The three variables, selection ratio, proportion considered 
satisfactory, and the size of the correlation coefficient all influence 
the size of the proportion of those selected who are considered 
satisfactory. Taylor and Russell (1939) have prepared tables which 
enable one to obtain the proportion correctly selected from 
knowledge of the three variables. Parts of their tables are 
reproduced below in Table 14:1. 
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TABLE 14:1  SELECTED VALUES FROM THE TAYL OR-RUSSELL TABLES 
 
(a) Proportion considered satisfactory = .20 

 
  Selection Ratio 
  .10 

 
.30 .50 .80 .90 

 .10 .25 .23 .22 .21 .21 
r .30 .37 .30 .27 .23 21 
 .50 .52 .38 .31 .24 .22 
 .80 .79 .53 .38 .25 .22 
 .90 .91 .60 .40 .25 .22 

 
 
(b) Proportion considered satisfactory = .80 
 

  Selection Ratio 
  .10 

 
.30 .50 .80 .90 

 .10 .85 .83 .82 .81 .81 
r .30 .92 .89 .87 .84 .82 
 .50 .97 .94 .91 .86 .84 
 .80 1.0 1.0 .98 .91 .87 
 .90 1.0 1.0 1.0 .94 .88 

 
 
 
Each table shows the effects of increasing rxy  and increasing 
the selection ratio. The effects of changing the criterion cut-off 
can be assessed by comparing the tables. It is worth noting that the 
original tables give much more detail than is given here. All values 
of rxy  from 0 to 1.0 in steps of .05 rxy  are given, as are the values for 
selection ratios of .05 to .95, and values of proportion of employees 
considered satisfactory from .05 to .90 
 
 
 
. 
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Let us now see how we could use these tables in a clinical 
situation. Suppose that a researcher has found a significant 
difference in Neuroticism scores between phobics cured or much 
improved by systematic desensitization, and those not so helped. 
Let us further suppose that in this investigation the ratio for the 
difference between means was 3.0 and that the number of patients 
involved was 93. Using formula (12:7) we can convert this value to 
a measure of association thus: 
 
 

   eta = t 2

t 2 + df
=

9
9 + 91

= .09 = .30 

 
 
If we can assume a linear relationship between N scores and 
degree of improvement we use the information in the Taylor- 
Russell Tables to find out what proportion of those selected for 
treatment will in fact benefit. Suppose that we use N scores to 
select, and that we accept 50 per cent of those referred, and that 
the success rate for systematic desensitization in phobics is 80 per 
cent. (This last figure is analogous to the proportion considered 
satisfactory.) 
 
We can now use Table 14: 1(b) to see the proportion of those 
selected who will be cured or much improved by treatment. This 
value turns out to be .87. Using no selection at all we would have 
cured 80 per cent of those treated, using N scores to select we cure 
87 per cent of those treated. But as this is a clinical situation other 
questions must be asked. 
 
 
(1)  What proportion of those rejected could have been cured 

by treatment? 
 
(2)  What proportion of those who could have been cured have 

been cured? 
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Question (1) can be answered as follows. We know that 50 
percent of the patients were selected for treatment, and that of 
this 50 per cent 87 per cent were cured. So the proportion of the 
total population who were (a) selected and (b) cured will be .50 x 
.87 = .435. Further we know that .80 of the total population could 
have been cured, so the proportion of those rejected who could 
have been cured will be given by 
 
 

   
.80− .435

.50
= .73 

 
So the use of our selection procedure has lead to the rejection 
of a group of patients 73 per cent of whom could have been cured 
by treatment. 
 
The second question was concerned with the proportion of 
those who could have been cured who have been cured. This will 
be the proportion cured, over the proportion who could have 
been, or: 
 

   545.
80.
435.

=  

 
So the use of the selection procedure leads to the cure of 54.5 
per cent of those who might have been cured, while the use of 
no selection procedure would have lead to the cure of 100 per 
cent of curable patients. 
 
It will be objected that no-one ever chooses patients for treatment 
on the basis of one characteristic.  This may be true,  but the only 
difference it makes is that we need the validity coefficient for the 
selection procedure as a whole instead of just for one measure. The 
moral of this example is clear. Selection for treatment in clinical 
situations must take into account the factors outlined above. 
Otherwise clinicians may be doing their patients a grave injustice. 
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A.  If in the above example the success rate for treatment had 

been 20 per cent: 
 
(a) what proportion of those selected would have been 
cured? 
 
(b) what proportion of all who could have been cured 
would have been cured? 
 

 
B.   Referring to the diagram below and using the areas A, B, C, 

and D, indicate the areas included by: 
(a) total considered satisfactory 
 
(b) proportion of successes amongst those selected 
 
(c) proportion of potential successes selected  
 
(d) proportion of failures correctly classified  
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Answers 
 
A.  (a) Referring to Table 14: l(a), with a success rate of .20, a 

selection ratio of .50 and a correlation between predictor and 
criterion of .30, the percentage of those selected who will be 
cured is 27 per cent. 
 
(b) 13.5 per cent of the sample will be (1) selected and (2) 
cured. Altogether 20 per cent are curable, therefore 13.5

20.0
 or 

67.5 per cent of those curable will have been cured. 
 
 
B.  (a) A + B     
 
  (b) B

B+ D
   

  
 (c)  B

A+ B
   

 
  (d) C

C + D
 

 
 
 

 

 
 


	Chapter 01
	Chapter 02
	Chapter 03
	Chapter 04
	Chapter 05
	Chapter 06
	Chapter 07
	Chapter 08
	Chapter 09
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14

